

MARKING SCHEME SET 55/2/1/F

Page	E 2 of 18 Final draft 17/03/15	5:00	p.m.
	(i) $R = \frac{\Delta V}{\Delta I} = \frac{(0.8 - 0.7)V}{(20 - 10)mA}$ $= \frac{0.1}{10} \times 10^3$, 2	
Set1 Q9 Set2 Q8 Set3 Q7	Calculation of resistance of the diode at (i) $I = 15 \text{ mA}$ (ii) $V = -10 \text{ V}$ $1+1$ (i) $P = {}^{\Delta V} = {}^{(0.8-0.7)V}$	1/2	
	b) Due to their very weak interaction with matter.	1	2
	a) ${}^{3}_{1}H \rightarrow {}^{3}_{2}He + {}^{0}_{-1}e + \bar{\vartheta} + Q$ Also accept: ${}^{A}_{Z}X \rightarrow {}^{A}_{ZH}Y + {}^{0}_{-1}e + \bar{\vartheta} + Q$		
Set3 Q9	b) Reason 1	1	
Set1 Q8 Set2 Q6	a) β - decay of Tritium 1		
	$\lambda \cong 6.6 \times 10^{-10} m$	1⁄2	2
	$\lambda = \frac{2 \times 3.14 \times 2.12 \times 10^{-10}}{2} m$	1⁄2	
	As $2\pi r_n = n\lambda$	1⁄2	
	$= 2.12 A^0$	1⁄2	
	$\therefore r_2 \cong 4 \ge 0.53 A^0$		
	Alternatively, For first excited state $n = 2$		
	$= 6.63 \times 10^{-10} m$	1/2	2
	$=\frac{6.63 \mathrm{X} 10^{-34}}{\sqrt{2} \mathrm{X} 9.1 \mathrm{X} 10^{-31} \mathrm{X} 3.4 \mathrm{X} 1.6 \mathrm{X} 10^{-19}} m$		
	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$	1	
	h h	1/2	
Set2 Q10 Set3 Q8	Formula1/2Determination of de –Brogic wavelength1 1/2		
Set1 Q7 Set2 Q10 Set3 Q8	Formula1/2Determination of de –Brogic wavelength1 1/2		

$= 10\Omega$ (Also accept if a student calculates different value of the resistance like 30Ω using this method) (ii) $R = \frac{10^{2}}{1\mu^{2}}$ $= 10^{2}\Omega$ (3) Set1 Q10 Set2 Q0 Set3 Q6 Dependence of refractive index on wavelength $\frac{1}{2}$ Calculation of value of critical angle $\frac{1}{1/2}$ Refractive index of the transparent medium decreases with increase in wavelength of the incident light. Also accept: $\mu = A + \frac{g}{3^{2}}$ $\mu_{ga} = \frac{speed of light in air}{speed of light in glass}$ $= \frac{3 \times 10^{6}}{2 \times 10^{6}} = 1.5$ (4) Also $\mu_{ga} = \frac{1}{\sin t_{c}} \Rightarrow t_{c} = stn^{-1}(\frac{2}{3})$ (5) Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens = $\frac{1}{f \operatorname{coral Length}}$ After cuting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{s}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)(\frac{1}{n_{1}} - \frac{1}{n_{2}})$ (Since $R_{1} = +R, R_{2} = -R$ Page 3 of 18 Final draft 17/03/15 5:00p.m.				
$ \begin{array}{c c} \text{using this methad } \\ \text{(ii)} & R = \frac{10^{V}}{14A} \\ = 10^{2}\Omega \\ \end{array} \end{array} \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array}$ Set1 Q10 $ \begin{array}{c} \text{Dependence of refractive index on wavelength } \frac{1}{2} \\ \text{Calculation of value of critical angle } 1 \frac{1}{2} \\ \text{Refractive index of the transparent medium decreases with increase in wavelength of the incident light. \\ \text{Also accept: } \mu = A + \frac{n}{\lambda^{2}} \\ \mu_{ga} = \frac{speed of light in air}{speed of light in glass} \\ = \frac{3\times10^{3}}{2\times10^{3}} = 1.5 \\ \text{Also } \mu_{ga} = \frac{1}{\sin t_{c}} \Rightarrow i_{c} = \sin^{-1}\left(\frac{1}{n}\right) \\ = \sin^{-1}\left(\frac{2}{3}\right) \\ \begin{array}{c} 0R \\ \text{Relation of Power of each part with the focal length of original Lens 1 \\ \text{Finding the value of radius of curvature } 1 \\ \end{array} \\ \begin{array}{c} \text{Power of a lens} = \frac{1}{f \cot l \ long the power of original lens, 1 \\ i.e. \ focal length of each part will be 2f \\ \vdots \\ P = \frac{1}{f} \Rightarrow f = \frac{1}{5} \ m = 0.2m = 20 \ cm \\ \frac{1}{f} = (\mu - 1)\left(\frac{1}{\kappa_{h}} - \frac{1}{\kappa_{2}}\right) \\ (\text{Since } R_{1} = +R, R_{2} = -R \end{array}$		$= 10\Omega$	1⁄2	
Set2 Q9 Set3 Q6 Dependence of refractive index on wavelength $\frac{1}{2}$ Calculation of value of critical angle $\frac{1}{12}$ Refractive index of the transparent medium decreases with increase in wavelength of the incident light. Also accept: $\mu = A + \frac{\theta}{\lambda^2}$ $\mu_{ga} = \frac{speed of light in air}{speed of light in glass}$ $= \frac{3 \times 10^{\theta}}{2 \times 10^{\theta}} = 1.5$ $\frac{1}{2}$ Also $\mu_{ga} = \frac{1}{sin l_c} \Rightarrow i_c = sin^{-1}(\frac{1}{\mu})$ $= sin^{-1}(\frac{2}{3})$ $\frac{1}{2}$ Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens $= \frac{1}{f ocal Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $\frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 cm$ $\frac{1}{f} = (\mu - 1)(\frac{1}{\kappa_1} - \frac{1}{\kappa_2})$ (Since $R_1 = +R, R_2 = -R$		using this method) (ii) $R = \frac{10 V}{1 \mu A}$		2
wavelength of the incident light. Also accept: $\mu = A + \frac{\mu}{\lambda^2}$ $\mu_{ga} = \frac{speed of light in air}{speed of light in glass}$ $= \frac{3 \times 10^8}{2 \times 10^8} = 1.5$ ½ Also $\mu_{ga} = \frac{1}{sin l_c} \Rightarrow i_c = sin^{-1} \left(\frac{1}{\mu}\right)$ ½ $= sin^{-1} \left(\frac{2}{3}\right)$ ½ 2 NR Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens $= \frac{1}{focal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ ½ $P = \frac{1}{f} \Rightarrow f = \frac{1}{s}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$ ½	Set2 Q9	-		
$\mu_{ga} = \frac{speed of \ light \ in \ air}{speed of \ light \ in \ glass}}$ $= \frac{3 \times 10^8}{2 \times 10^8} = 1.5$ 42 Also $\mu_{ga} = \frac{1}{\sin t_c} \Rightarrow i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$ $= \sin^{-1}\left(\frac{2}{3}\right)$ V_2 2 Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 V_2 Power of a lens = $\frac{1}{f \operatorname{coal} \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5} m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{n_1} - \frac{1}{n_2}\right)$ (Since $R_1 = +R, R_2 = -R$ V_2			1/2	
$=\frac{3 \times 10^8}{2 \times 10^8} = 1.5$ $=\frac{3 \times 10^8}{2 \times 10^8} = 1.5$ V_2 Also $\mu_{ga} = \frac{1}{\sin l_c} \Rightarrow i_c = \sin^{-1} \left(\frac{1}{\mu}\right)$ $= \sin^{-1} \left(\frac{2}{3}\right)$ V_2 $P = \frac{1}{f coal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5} m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$ V_2		Also accept: $\mu = A + \frac{B}{\lambda^2}$		
Also $\mu_{ga} = \frac{1}{\sin l_c} \Rightarrow i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$ $= \sin^{-1}\left(\frac{2}{3}\right)$ OR Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens $= \frac{1}{f \operatorname{ccal Length}}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$ $\frac{1}{2}$		$\mu_{ga} = \frac{speed \ of \ light \ in \ air}{speed \ of \ light \ in \ glass}$		
Also $\mu_{ga} = \frac{1}{\sin t_c} \Rightarrow i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$ $= \sin^{-1}\left(\frac{2}{3}\right)$ OR Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens $= \frac{1}{focal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$		$=\frac{3\times10^8}{2\times10^8}=1.5$	1⁄2	
$= \sin^{-1}\left(\frac{\pi}{3}\right)$ OR Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature 1 Power of a lens $= \frac{1}{focal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$		Also $\mu_{ga} = \frac{1}{\sin l_c} \Rightarrow i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$	1⁄2	
Relation of Power of each part with the focal length of original Lens 1 Finding the value of radius of curvature1Power of a lens = $\frac{1}{focal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $\frac{1}{2}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$ (Since $R_1 = +R, R_2 = -R$		$=sin^{-1}\left(\frac{2}{3}\right)$	1⁄2	2
Finding the value of radius of curvature1Power of a lens = $\frac{1}{focal \ Length}$ After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \Rightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$		OR		
After cutting the lens into two identical parts, the power of each part will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \implies f = \frac{1}{5}m = 0.2m = 20 \text{ cm}$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$				
will be half of the power of original lens. i.e. focal length of each part will be $2f$ $\therefore P = \frac{1}{2f}$ $P = \frac{1}{f} \implies f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$		Power of a lens = $\frac{1}{focal Length}$		
$P = \frac{1}{f} \implies f = \frac{1}{5}m = 0.2m = 20 \ cm$ $\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ (Since $R_1 = +R, R_2 = -R$ $\frac{1}{2}$		will be half of the power of original lens.	1⁄2	
$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ (Since $R_1 = +R, R_2 = -R$		$\therefore P = \frac{1}{2f}$	1⁄2	
(Since $R_1 = +R, R_2 = -R$ ^{1/2}		$P = \frac{1}{f} \Longrightarrow f = \frac{1}{5}m = 0.2m = 20 \ cm$		
(Since $R_1 = +R, R_2 = -R$		$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$		
Page 3 of 18 Final draft 17/03/15 5:00p.m.		(Since $R_1 = +R, R_2 = -R$		
	Page	e 3 of 18 Final draft 17/03/15	5:00	p.m.

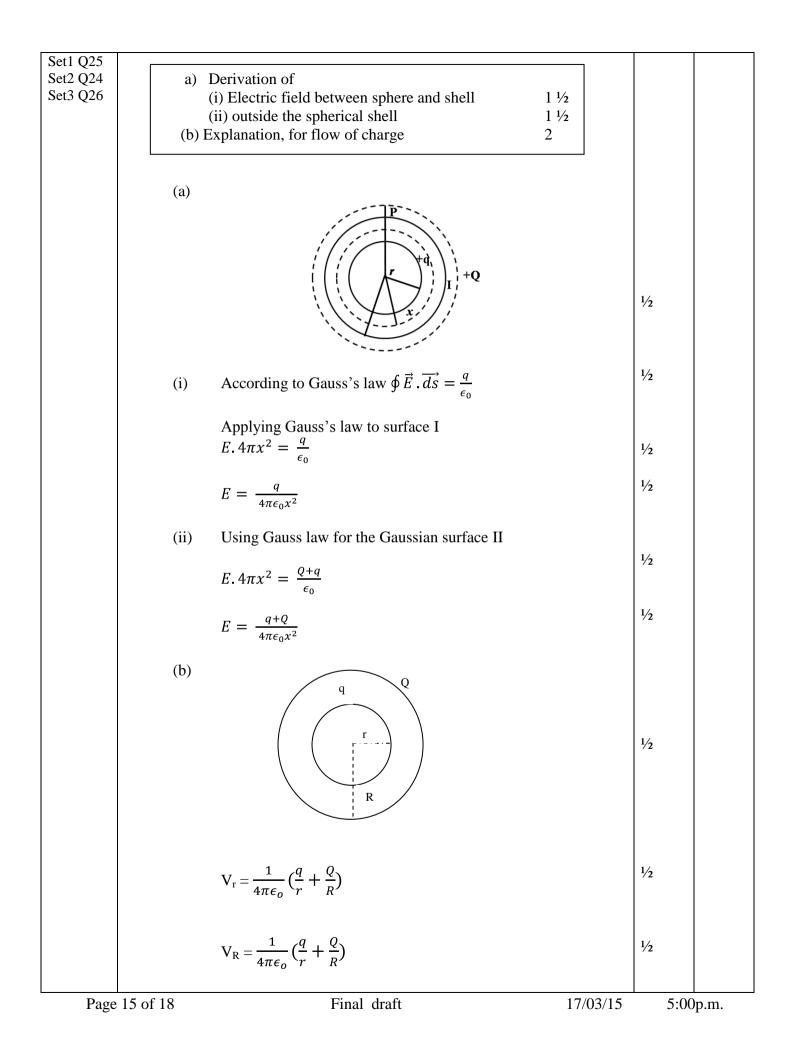
		1	
	The charge, at any one vertex will remain in equilibrium, if the net electric force there, due to the other three charges, is zero.	1	
	Let Q be the required charge		
	\vec{F}_1 = Force at A due to the charge at B		
	$=\frac{1}{4\pi\epsilon_0}\cdot\frac{q^2}{l^2}\text{ along }\overrightarrow{BA}$		
	\vec{F}_2 = Force at A due to the charge at C		
	$=\frac{1}{4\pi\epsilon_0}\cdot\frac{q^2}{l^2}\text{ along }\overrightarrow{CA}$	1/2	
	$\vec{F}_1 + \vec{F}_2 = \sqrt{3} \cdot \frac{1}{4\pi\epsilon_0} \cdot \frac{q^2}{l^2}$ along GA		
	Force at A due to charge at G = $\frac{1}{4\pi\epsilon_0}$. $\frac{Qq(3)}{l^2}$	1⁄2	
	$3Qq = -\sqrt{3}q^2$		
	$3Qq = -\sqrt{3}q^2$ $Q = -\frac{q}{\sqrt{3}}$	1/2	3
Set1 Q12 Set2 Q21 Set3 Q16	a) Depiction of Trajectory and finding the Time 1+1b) Calculation of magnitude of magnetic field 1		
	a) When field is taken vertically upward		
	Alternatively,		
	When Magnetic field is taken vertically inward		
Page	e 5 of 18 Final draft 17/03/15	5:00	p.m.

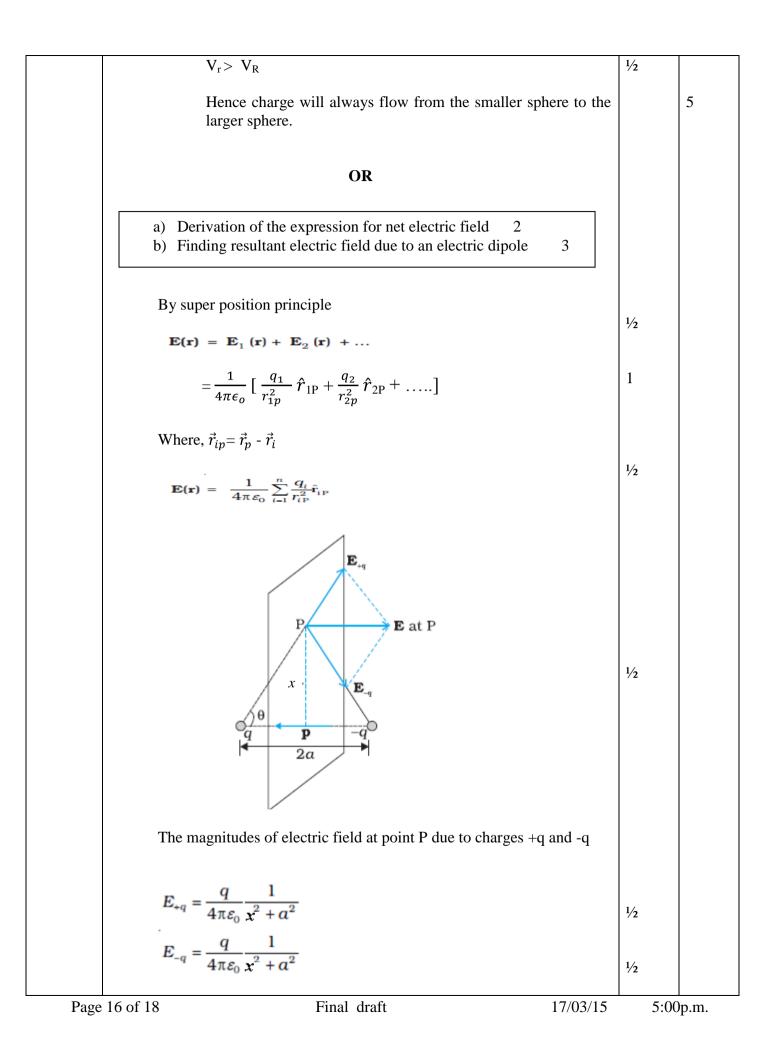
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
	[Note: Either of the above two figures, should be accepted] Radius of the path:		
	$\frac{mv^2}{r} = qvB$ $\therefore r = \frac{mv}{qB} = \frac{9.1 \times 10^{-31} \times 4 \times 10^4}{1.6 \times 10^{-19} \times 10^{-5}} \mathrm{m}$		
	$= \frac{9.1 \times 4}{1.6} \times 10^{-3} \text{m}$ = 22.3 × 10 ⁻³ m = 2.23 x 10 ⁻² m = 2.23 cm	1/2	
	$T = \frac{\pi r}{v} = \frac{\pi \times 2.25 \times 10^{-3}}{4 \times 10^{4}} \approx 1.8 \times 10^{-7} s$ [Note: Full credit may be given if a student calculates (i) r and (ii) time taken directly without calculating r]	1/2	
	b) $ILB = mg$ $2 \times 1.5 \times B = 200 \times 10^{-3} \times 9.8$ $B = \frac{200 \times 9.8 \times 10^{-3}}{3} \text{ T}$	1/2	
Set1 Q13	= 0.653T	1/2	3
Set2 Q22 Set3 Q17	Constructions of Secondary wavelets of refracted wavefront 1 ¹ / ₂ Verification of Snell's Law 1 ¹ / ₂		
Page	e 6 of 18 Final draft 17/03/15	5:00	p.m.

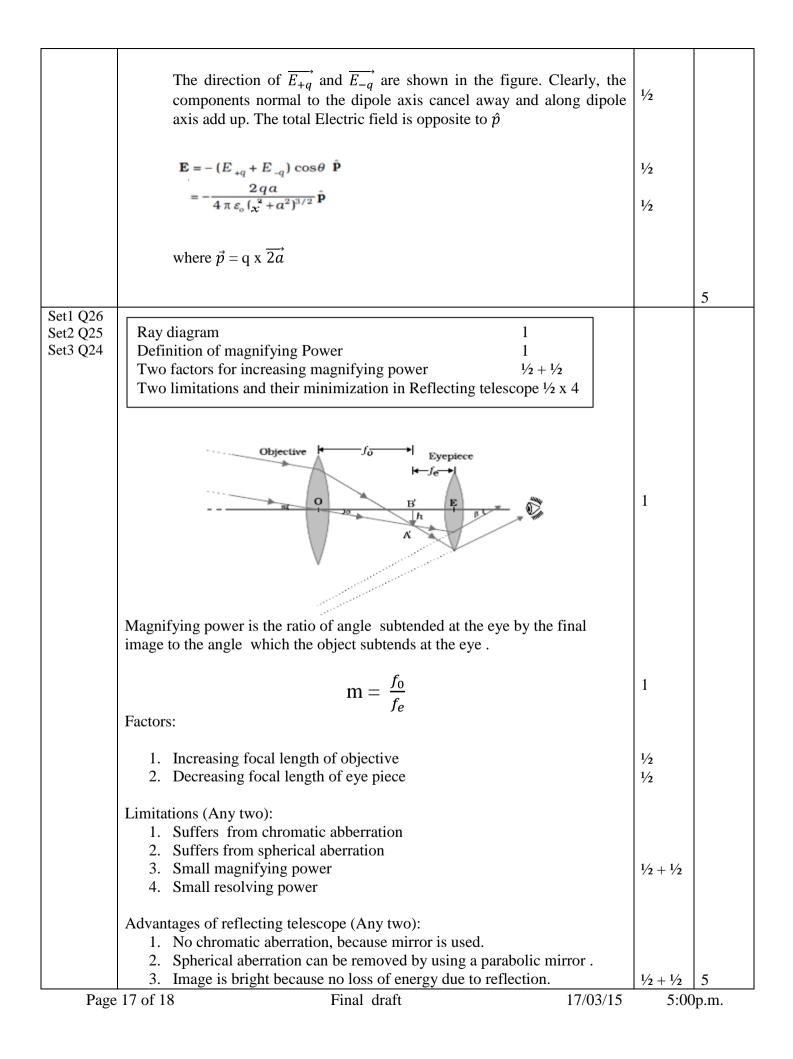
	Incident wavefront A' v_1 v_1 i V_1^T Medium 1 i $V_2 < v_1$ V_1^T V_1^T V_1^T V_1^T V_1^T V_1^T V_1^T V_1^T V_1^T V_1^T V_2^T	11/2	
	In $\triangle ABC$ Sin $i = \frac{BC}{AC} = \frac{V_1 \tau}{AC}$	1/2	
	AC $ACIn \Delta AEC$		
	$Sin r = \frac{AE}{AC} = \frac{V_2 \tau}{AC}$	1/2	
	$\Rightarrow \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \mu_{21}$	1/2	3
	$Sin r v_2 r^2 1$		
Set1 Q14 Set2 Q16	Calculation of Magnitude of emf2Calculation of current induced1		
Set3 Q18	Intial flux through the coil	1/2	
	$(\phi_B)_{initial} = NBA\cos\theta$	72	
	$= 500 \times (3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 0^{0}) Wb$		
	$= 1.5 \pi \times 10^{-4} Wb$	1⁄2	
	Final flux after rotation		
	$(\phi_B)_{final} = 500 \times (3.0 \times 10^{-5} \times \pi \times 10^{-2} \cos 180^{\circ}) Wb$		
	$= -1.5\pi \times 10^{-4} Wb$	1⁄2	
	Induced emf $e = -\frac{d\varphi}{dt}$	1⁄2	
	$=\frac{3\pi \times 10^{-4}}{0.25}V \simeq 3.8 \times 10^{-3}V$	1⁄2	
	=3.8mV		
	Induced current = $\frac{e}{R}$		
Page	e 7 of 18 Final draft 17/03/15	5:00	p.m.

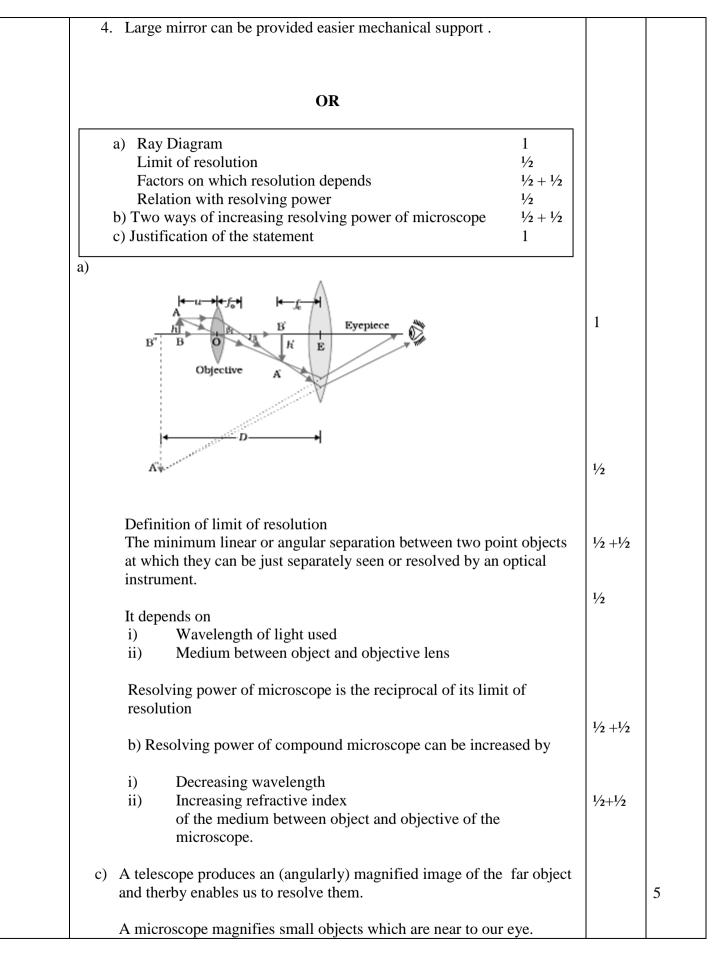
	3.8×10^{-3}		
	$=\frac{3.8\times10^{-3}}{200}$ A	1⁄2	3
	$= 1.9 \times 10^{-5} A (= 19 A \mu)$		
	$= 1.9 \times 10^{-4} A (= 19 A \mu)$		
Set1 Q15 Set2 Q17 Set3 Q11	Calculation of Longest wavelengths $1+1$ Region in which these transitions lie $\frac{1}{2} + \frac{1}{2}$		
	Rydberg's formula		
	$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$	1⁄2	
	Transistions corresponding to Longest wavelength in Lyman series		
	$n_i = 2, n_f = 1$	1⁄2	
	$\frac{1}{\lambda} = R\left(1 - \frac{1}{4}\right) = \frac{3}{4}R$		
	$\lambda = \frac{4}{3R} = \frac{4}{3 \times 1.1 \times 10^7} \mathrm{m}$		
	$= 1.21 \times 10^{-7} = 121 \ nm$	1⁄2	
	Transistion corresponding to Longest wavelength in Balmer Series.		
	$n_i = 3, n_f = 2$		
	$\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{9}\right)$		
	$= \frac{5}{36} R = 6.545 \times 10^{-7} m \simeq 655 nm$	1⁄2	
	First transistion lies in ultraviolet region	1⁄2	
<u> </u>	Second transistion lies in Visible region	1⁄2	3
Set1 Q16 Set2 Q18 Set3 Q12	Reason for not obtaining sustained interference pattern1/2Derivation of fringe width2 1/2		
	Two independent sources do not maintain constant phase difference, therefore the interference pattern will also change, with time.	1⁄2	

	G P x x x y z y z g' G'	1/2	
	Consider a point P on the screen and let there be the maximum intensity $S_2P - S_1P = n\lambda \qquad (n = 0, 1, 2, \dots, \dots) \qquad \dots \dots (i)$ $(S_2P)^2 - (S_1P)^2 = \left[D^2 + \left(x + \frac{d}{2}\right)^2\right] - \left[D^2 + \left(x - \frac{d}{2}\right)^2\right]$	1/2	
	$= 2xd$ Where, $SS_1 = d$, $OP = x$,		
	$\therefore S_2 P - S_1 P = \frac{2xd}{S_2 P + S_1 P}$ If $x, d \ll D$, then (1)	1/2	
	$S_2 P - S_1 P = \frac{2xd}{2D} = \frac{xd}{D} \dots \dots$	1/2	
	$\Rightarrow x = \frac{n\lambda D}{d} \text{ for n}^{\text{th}} \text{ maximum}$ Similarly for (n+1)th maximum $x' = \frac{(n+1)\lambda D}{d}$ \therefore Fringe width $\beta = x' - x = \frac{\lambda D}{d}$	1/2	3
Set1 Q17 Set2 Q19 Set3 Q13	Answer of (a), (b) and (c) 1+1+1		
	(a) Defined as the frequency range over which a given equipment operates .[Alternatively: The 'frequency spread' of a given signal]	1/2 1/2	
	Importance : To design the equipments used in communication system for distinguishing different message signals .	1/2 + 1/2	
	(b) Digital signals are those which take only discrete stepwise values and analogue signals are continuous variations of voltage /current .	1⁄2	


	(c) Transducer : converts one form of energy into another Repeater : Enhances the range of communication.	1⁄2	3
Set1 Q18 Set2 Q11 Set3 Q14	Basic Processes during Formation of p-n junction diode2Explanation of barrier potential1		
	Two important processes involved during the formation of p-n jumction are (i) Diffusion (ii) Drift		
	Due to the different concentration gradient of the charge carriers on two sides of the junction, electrons from n-side start moving towards p-side and holes start moving from p-side to n-side . This process is called Diffusion.	1	
	Due to diffusion, positive space change region is created on the n-side of the junction and negative space change region is created on the p-side of the junction. Hence, an electric field called Junction field is set up from n-side to p-side which forces the holes of n-side to move towards p-side and electrons	1	
	of p-side to move towards n-side . This process is called Drift. [Also accept : Diffusion : Movement of majority charge carriers across the junction. Drift : Movement of minority charge carriers across the junction]		
	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$		
	E Alternatively: V_0	1/2	
	The loss of electron from n region and gain of electron by p region causes a difference of potential across the junction called barrier potential whose polarity is such that it opposes further flow of charges.	1/2	3
Set1 Q19 Set2 Q12	Answers of part (a), (b) and (c) 1+1+1		
Set3 Q21	a) No Electrons at different depths, need different energies to come out.	1/2 1/2	
	b) No	1/2	


	The K.E. depends on the energy of each photon and not on the number of photons (intensity of light).	1⁄2	
	c) Number of photoelectrons emitted depends on the intensity of incident light.	1	3
Set1 Q20 Set2 Q13 Set3 Q22	Identification of equivalent gate1Truth Table2		
	Equivalent gate is OR gate [Note: If a student identifies (i) NOR gate (ii) NAND gate separately, award this one mark] Truth Table	1	
	A B X Y		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	1 0 0 1	1 x 2= 2	3
	1 1 0 1		
Set1 Q21 Set2 Q14 Set3 Q19	Explanation of deflection in galvanometer1Modification of Ampere's circuital Law1Generalized Expression1During charging / discharging of the capacitor, displacement current betweenthe plates is set up. Hence, circuit becomes complete and galvanometer shows	1	
	momentary deflection. (Alternatively, There is a momentary flow of current during charging / discharging.)		
	$\mathbf{f}(t) \rightarrow \begin{bmatrix} \mathbf{F} \\ $	1⁄2	
	According to Ampere's circuital Law		
	$\oint \vec{B} \cdot \vec{dl} = \mu_o I$	1⁄2	
	Applying it to surface $P, \oint \vec{B} \cdot \vec{dl} = \mu_o I_c$ Applying it to surface $S, \oint \vec{B} \cdot \vec{dl} = 0$		
	11 of 18 Final draft 17/03/15)p.m.


	$\therefore \oint_{p} \vec{B}.\vec{dl} \neq \oint_{s} \vec{B}.\vec{dl}$	1⁄2	
	This is in contradiction to Ampere's circutial law. Hence the law needs modification.		
	Alternatively: this observations shows that during charging/ discharging, the circuit is (momentarily) complete and there is a 'current flow' between the capacitor plates also.		
	There is, therefore, a need to include this current ' flowing' across the 'gap'.]		
	Modified form of Ampere's circuital law		
	$\oint \vec{B} \cdot \vec{dl} = \mu_o \left[i_c + \epsilon_o \frac{d}{dt} \phi_e \right]$	1⁄2	3
Set1 Q22 Set2 Q15 Set3 Q20	Expression for (a) potential drop1 ½(b) charge½(c) energy stored1		
	a) Net e.m.f = $2V - V = V$		
	Net resistance = $2R + R = 3R$		
	So current in the circuit I = $\frac{V}{3R}$	1/2	
	Potential difference across $BE = 2V - I \times 2R$		
	$= 2V - \frac{V}{3R} \times 2R = \frac{4}{3}V$	1⁄2	
	So potential differnce across $C = \frac{4}{3}V - V = \frac{V}{3}$	1⁄2	
	(i) Charge $Q = C \times \frac{V}{3} = \frac{CV}{3}$	1⁄2	
	(ii) Energy stored = $\frac{1}{2}CV^2$	1⁄2	
	$= \frac{1}{2}C\left(\frac{V}{3}\right)^2 = \frac{CV^2}{18}$	1⁄2	3
Sat1 022	SECTION - D		
Set1 Q23 Set2 Q23 Set3 Q23	Values displayed2Measures to avoid wastage of energy1Calculation of wastage of energy1		
	(a) Any two values – Knowledgeable , concern for conservation of resources,	2	


	convincing, thoughtful etc.		
	(b) (i) High power devices should be used only when required.(ii)All electrical devices should be switched off when not in use .	1	
	(c) Energy = $P \times t = \frac{2}{1000} \times 20 \ kWh = .04 \ kWh$		
	Or, $E = 2 \times 20 \times 3600 J = 144000 J$	1	4
G .: 1 . 0.0.4	SECTION - E		
Set1 Q24 Set2 Q26 Set3 Q25	Point of similarities and differences between coulomb's law and BiotSavart's Law $1+1$ Derivation of magnetic field at the centre of a circular coil3		
	Similarities i) Both are long range, since both depend inversely on the square of	1/2	
	distance to the point of interest.ii) Principle of super position is applicable in both cases.	1⁄2	
	Differences i) Electrostatic field is produced by a scalar source (electric charge). The magnetic field is produced by a vector source $\mathrm{Id}\vec{l}$	1⁄2	
	ii) Electrostatic field is along the displacement vector joining the source and field point. The magnetic field is perpendicular to the plane containing the current element $(Id\vec{l})$.	1/2	
	$ \begin{array}{c} $	1⁄2	
	By Biot-Savart's Law $dB = \frac{\mu_0 I dl}{4\pi r^2} = \frac{\mu_0 I dl}{4\pi x^2 + r^2}$	1⁄2	
	When the perpendicular components are summed over, they cancel out and. The contribution is only from the x component which can be obtained by integrating		
	$dB_{\rm X} = dB\cos\theta$	1⁄2	
Daga	13 of 18 Final draft 17/03/15	5.0	Dp.m.

$\underline{\mu_o}$	$\frac{Idl}{(x^2 + r^2)} \cdot \frac{r}{(x^2 + r^2)^{1/2}}$		
$-\frac{1}{4\pi} (x)$	$(x^2 + r^2)$ $(x^2 + r^2)^{1/2}$		
		1⁄2	
_ <i>µ</i>	$\frac{\iota_o I dl}{(2+r^2)^{3/2}}$		
$=$ $\frac{1}{4\pi(x^2)}$	$(2^2 + r^2)^{3/2}$		
$\boldsymbol{B}=B_{\boldsymbol{x}}\hat{\iota}$	$= \frac{\mu_0 lr}{4\pi (x^2 + r^2)^{3/2}} .2\pi r\hat{\iota}$		
		1/2	
μ	$_{2}Ir^{2}$	12	
$=\frac{1}{2(x^2-x^2)}$	$\frac{2r^2}{(r^2)^{3/2}}\hat{l}$		
2(1		1⁄2	5
A1	$\mu_0 I$		
	entre x=0, $\vec{B}_0 = \frac{\mu_0 I}{2r} \hat{i}$		
[Note: A	ny alternative method should also be accepted] OR		
	ion of eddy current 1		
	tion of eddy currents 1		
	ation of eddy currents $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
Descrip	ption $\frac{1/2 + 1/2 + 1/2}{1/2 + 1/2}$		
•	rrents are produced when a bulk conductor is present in a changing		
magnetic	e field.	1/2	
magnetic		1/2	
magnetic	e field.	1/2	
magnetic Applicati	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some 	1⁄2 1⁄2	
magnetic Applicati	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, 		
magnetic Applicati	e field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the		
magnetic Applicati	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is 	1/2	
magnetic Applicati	e field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the		
magnetic Applicati i)	e field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong.	1/2	
magnetic Applicati	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is 	1/2	
magnetic Applicati i)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping 	1⁄2 1⁄2	
magnetic Applicati i)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet 	1⁄2 1⁄2	
magnetic Applicati i)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current 	1⁄2 1⁄2	
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. 	1/2 1/2 1/2	
magnetic Applicati i)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters 	1/2 1/2 1/2 1/2	
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters The shiny metal disc in the electric power meter rotates due to 	1/2 1/2 1/2	
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters The shiny metal disc in the electric power meter rotates due to eddy currents. Electric currents are induced in the disc by 	1/2 1/2 1/2 1/2	5
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters The shiny metal disc in the electric power meter rotates due to 	1/2 1/2 1/2 1/2	5
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters The shiny metal disc in the electric power meter rotates due to eddy currents. Electric currents are induced in the disc by 	1/2 1/2 1/2 1/2	5
magnetic Applicati i) ii)	 field. ion of Eddy Current Magnetic braking in trains Strong electromagnets are situated above the rails in some electrically powered trains. When the electromagnet are activated, the eddy currents induced in the rails oppose, the motion of the train. As there are no mechanical linkage, the breaking effect is strong. Electronmagnetic damping Certain galvanometers have fixed core made of non magnet metallic material. When the coil oscillates, the eddy current generated in the core oppose the motion and bring the coil to rest quickly. Electric power meters The shiny metal disc in the electric power meter rotates due to eddy currents. Electric currents are induced in the disc by magnetic fields produced by sinusoidally varying current in a coil. 	1/2 1/2 1/2 1/2	5

