CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/3 F</u>

Qn	Value points	Marks
1	X_2Y_3	1
2	3-Methylbut-2-en-1-ol	1
3	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
4	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
5	Rhombic sulphur	1
6	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	
	(Any one application)	1
7	a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals.b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-electrons.	1 1/2 ,1/2
8	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [Cr(C ₂ O ₄) ₃]	1
9	(i) CH ₃ MgBr/ H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
10	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
10	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2

	Maximum boiling azeotropes	1/2
	eg: HNO_3 (68%) and $H_2O(32\%)$ (or any other correct example)	
11	 a) Because they are unable to form H-bonds with water molecules. b) Because of the presence of chiral carbon in butan-2-ol. c) Due to dominating +R effect 	1 1 1
12	i) C ₆ H ₅ COOH PCl ₅ C ₆ H ₅ COCl H ₂ /Pd C ₆ H ₅ CHO BaSO ₄	1
	ii) $CH \equiv CH + H_2O \underline{Hg^{2+}/H_2SO_4} CH_3CHO$	1
	iii) CH ₃ COOH NaOH CH ₃ COONa NaOH + CaO, heat CH ₄	1
	OR	
	$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O} RCHO$	1
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/\text{ethylene glycol}} CH_2 + N_2$ ii)	1
	$ \begin{array}{c} \text{CH}_3 \\ + \text{CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_2} \end{array} \begin{array}{c} \text{CH(OCrOHCl}_2)_2 \\ \xrightarrow{\text{H}_3\text{O}^*} \end{array} \begin{array}{c} \text{CHO} \\ \end{array} $	1
13	$\Delta T_f = i. K_f m$	
	$= i K_f w_B \times 1000$	1
	$M_{\mathrm{B}} x w_{\mathrm{A}}$	
	$2K = 2 \times 1.86K \text{ kg/mol x w}_B \times 1000$	1
	58.5 g/mol x 37.2 g	
1.4	$w_{B} = 1.17g$	1
14	n HOH₂C - CH₂OH + n HOOC — COOH	
	Ethylene glycol Terephthalic acid (Ethane-1, 2 - diol) (Benzene-1,4 - di carboxylic acid)	1
	OH	
	ii) +CH ₂ O	1
	Phenol and formaldehyde	

	$CH_2 = CH - CH = CH_2 \cdot C_6H_5CH = CH_2$	1
	1, 3-Butadiene Styrene	
	(Note: half mark for structure/s and half mark for name/s)	
15	 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic amino group whereas basic amino acid has more number of basic amino group. iii) Vitamin C 	1 1 1
16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	cis- isomer trans-isomer	
	t_{2g}^4	1
	iii) dsp ² , diamagnetic	1/2 , 1/2
17	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1
	temperature decomposes to give pure Ni.	
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1
10	c) It is a mixture of Cu ₂ S and FeS	1
18	E cell = E^0 cell $-\frac{0.059}{n}V$ log $\frac{[Zn^{2+}]}{[H^+]^2}$	1
	E cell = $0.76 \text{ V} - \frac{0.059}{2} \text{ V log} = \frac{10^{-3}}{(10^{-2})2}$	1
	E cell = $0.76 - 0.0295$ V log 10	-
	= 0.7305 V	1
19	i) CH ₃ CH ₂ CH ₂ OH	1
	ii) Br Br	1

		1
	iii) CH ₃ CHO	
20	$d = \frac{Z \times M}{N_a \times a^3}$	1/2
	$6.23 \text{ g cm}^{-3} = \frac{\text{z x } 60 \text{ g/mol}}{6.022 \text{x} 10^{23} \text{ mol}^{-1} \text{ x } (4 \text{ x } 10 - 8 \text{cm})^3}$	1/2
	z=4	1
	fcc	1
21	i) Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii) Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
22	i) Due to coagulation of colloidal clay particles.	1
	ii) Because NH ₃ is easily liquefiable than N ₂ due to its larger molecular size.	1
	iii) Because of more surface area.	1
23	a) Concern for students health, Application of knowledge of chemistry to daily life, empathy	1/2 , 1/2
	, caring or any other	
	b) Through posters, nukkad natak in community, social media, play in assembly (or any other	1
	relevant answer)	1
	c) Wrong choice and overdose may be harmful	1/2+ 1/2
2.4	d) Aspartame, saccharin (or any other correct example)	
24	a) i)ammonolysis	
	$ \begin{array}{ccc} & & & & & \\ NH_3 & + & R - X & \longrightarrow & R - NH_3 X \longrightarrow & R - NH_2 + HX \\ & & & & & \\ Nucleophile & & & & & \\ & & & & & \\ Nucleophile & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1

(any one)

1

1

iii)

(or any other correct reaction)

b)reaction of primary amine

(soluble in alkali)

Reaction of secondary amine

(insoluble in alkali)

Tertiary amine doesn't react

OR

24

a) i)

Br

ii)

1/2,1/2,

1/2

1

1

	b) i) A- CH ₃ CN B- CH ₃ CH ₂ NH ₂ C- CH ₃ CH ₂ OH	1/2 ,1/2, 1/2
25	a)i) Activation energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate constant- rate of reaction when the concentration of reactant is unity.	1
	b)	1/2
	$k = \frac{2.303}{t} \log \left[\frac{A_0}{A} \right]$ $k = \frac{2.303}{t} \log \left[\frac{A_0}{A} \right]$,,,
	$k = \frac{2.303}{10 \text{ min}} \frac{100}{75}$	1/2
	$k = \frac{2.303 \times 0.125}{10 \text{ min}}$	
	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	1
	OR	
	a) i)First order ii) -k iii) s ⁻¹	
	b)	1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
	$t = \frac{2.303}{k} x 2$	

	2 202 100	1
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	
	$=\frac{2.303}{k}$	1/2
	$t_{99\%} = 2 \times t_{90\%}$	
		1
26	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	b) H ₄ P ₂ O ₇	1,1
	OR	
	a) F OH HO	1,1
	b)i)Because iron on reaction with HCl produces H ₂ (g) which prevents the formation of FeCl ₂ to	1
	FeCl ₃ / Because HCl is a weak oxidising agent.	
	ii) Because of higher oxidation state of chlorine in HClO ₄	1
	/ =	-
	iii) Because of lower dissociation enthalpy of Bi-H bond.	1