	CHEMISTRY MARKING SCHEME 2015	
	BLIND SET 56/P	
	<u>SE1-50/B</u>	
Q ue	Value points	Marks
S.	With increases in temperature extent of adapting decreases	1
1	with increase in temperature extent of adsorption decreases.	1
2		1
	Xc	
	Square pyramidal (Fither name or structure)	
3	Phosphorus is already in its highest oxidation state (+5) in H_3PO_4 whereas in H_3PO_3 , phosphorus	1
	is in its intermediate oxidation state, can be oxidized as well as reduced.	
4	Because of non- involvement of d electrons / Due to small splitting energy gap, electrons are not forced to pairup	1
5	Diazotization	1
6	Cationia vacancias are formed/non staichiometric defect/Impurity defect	2
0	Cationic vacancies are formed/ non-stolenometric defect/ impurity defect.	2
7	Density = $\underline{MZ}_{3\times 2}$	1⁄2
	$a^3 N_A$ $a^3 = MZ$	
	ρN_A	
	$\frac{99 \text{ g mol}^{-1} \text{ x } 4}{2.4 \text{ c sm}^3 \text{ r } (0.022 \text{ r } 10^{23} \text{ m sl}^{-1})}$	1⁄2
	$= 5.4 \text{ g cm}^{2} \text{ x} \ 6.025 \text{ x10}^{-100} \text{ mor}$ $= 1213.4 \text{ x} \ 10^{-23} \text{ cm}^{3}$	
	$a = 5.78 \times 10^{-8} cm$	1
	OR	
7	Insulators Semiconductors	
	1. Large energy gap occurs betweenSmall energy gap occurs between valence	
	valence band and conduction band band and conduction band 2 Temperature has no effect Conduction increases with temperature	11
8	$K_4[Fe(CN)_6] \longrightarrow 4 K^+ + [Fe(CN)_6]^{4-}$	1,1
	Initial Conc. 1 0 0	
	Conc. After dissociation $1 - \alpha$ 4α α Total no of moles after dissociation = $1 - \alpha + 4\alpha + \alpha = 1 + 4\alpha$	
	Van't Hoff's factor = <u>No_of moles after dissociation</u>	1/2
	No. of moles before dissociation i = (1 + 4 c) / 1 = 1 + 4 c	1/2
	$(1 + 4\alpha)/(1 - 1 + 4\alpha)$ $\alpha = 50/(100 = 0.5)$,2
	$i = 1 + 4 \ge 0.5 = 3.0$	$\frac{1/2}{1/2}$
9	(a)Saline water contains many electrolytes which favour formation of more no. of electrochemical	1
	cells. (b) Mg acts as sacrificial anode / Mg is more reactive than iron/ cathodic protection/ Mg prevents	
	(c) his uses as submining anode / his is more reactive than non/ eachouse protection/ his prevents	1

	the oxidation of steel	
10	Sulphur; Due to small size and greater inter electronic repulsions in oxygen.	1,1
11	Molality of the solution ,m = Moles of solute / Mass of solvent in Kg = $5 / 342$ 95 / 1000	1/2
	$\Delta T_f = K_f m; K_f = \Delta T_f / m$	1⁄2
	$K_{f} = \frac{(273.15 - 271)K \times 95 \times 342}{5 - 1000}$	1⁄2
	$S \ge 1000$ $K_{\rm f} = 13.97 \text{ K kg mol}^{-1}$	1⁄2
	Molality of the glucose = $(5/180) / (95 / 1000)$ $\Delta T_f = K_f m = (13.97 \times 5000) / (95 \times 180) = 4.08 K$ f p of glucose = 273.15 - 4.08 = 269.07 K	1/2
	(or by any other method)	1⁄2
12	$\begin{split} E_{cell} &= E^{o}_{cell} - \underline{0.0591}_{n} V \frac{\log [Mg^{2^{+}}]}{[Cu^{2^{+}}]} \\ &= 2.71 - (0.0591/2) V \log(0.1/0.01) \\ &= 2.71 - 0.02955 V \log (10) = 2.71 - 0.0295 \end{split}$	1
	= 2.684 V If the conc. of Mg^{2+} ions increases, E_{rel} deceases	1
	If the conc. of Cu^{2+} ions increases, E_{cell} increases	1/2 1/2
13	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the jons of the electrolytes. 	1 1 1
13 14	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., 	$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1, \frac{1}{2} \end{array} $
13	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead 	1 1 1 1, ¹ / ₂ 1, ¹ / ₂
13	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead 	1 1 1, ¹ / ₂ 1, ¹ / ₂
13 14 14	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat ZnO(s) + CO₂(g) 	$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1, \frac{1}{2} \\ 1, \frac{1}{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
13 14 14	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat → ZnO(s) + CO₂(g) Roasting : Heating of concentrated ore in presence of air or oxygen Eg., 2ZnS(s) + 3O₂(g) heat → 2ZnO(s) + 2SO₂(g) 	$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1, \frac{1}{2} \\ 1, \frac{1}{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
13 14 14 15	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. ^(©) The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat→ ZnO(s) + CO₂(g) Roasting : Heating of concentrated ore in presence of air or oxygen Eg., 2ZnS(s) + 3O₂(g) heat→ 2ZnO(s) + 2SO₂(g) (or any other correct example) (a)Because O-H bond is stronger than S-H bond / Due to strong H-bonding in water. (b)Bi⁺³ more stable due to inert pair effect, so Bi⁺⁵ gets reduced to +3 state. © Due to its affinity for water . 	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1, \frac{1}{2}\\ 1, \frac{1}{2}\\ 1\\ \frac{1}{2}\\ 1\\ \frac{1}{2}\\ 1\\ 1\\ 1\\ 1 \end{array} $
13 14 14 15 16	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. (a) The colloidal particles of clay get coagulated by the ions of the electrolytes. (a) The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat ZnO(s) + CO₂(g) Roasting : Heating of concentrated ore in presence of air or oxygen Eg., 2ZnS(s) + 3O₂(g) heat ZnO(s) + 2SO₂(g) (or any other correct example) (a) Because O-H bond is stronger than S-H bond / Due to strong H-bonding in water. (b)Bi⁺³ more stable due to inert pair effect, so Bi⁺⁵ gets reduced to +3 state. (a) 5 (b) [Co(NH₃)₆]₂(SO₄)₃, octahedral. (c) It forms a Copper complex, not having free Cu⁺² ions 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13 14 14 15 16 17	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. © The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat→ ZnO(s) + CO₂(g) Roasting : Heating of concentrated ore in presence of air or oxygen Eg., 2ZnS(s) + 3O₂(g) heat→ 2ZnO(s) + 2SO₂(g) (or any other correct example) (a)Because O-H bond is stronger than S-H bond / Due to strong H-bonding in water. (b)Bi⁺³ more stable due to inert pair effect, so Bi⁺⁵ gets reduced to +3 state. © Due to its affinity for water . (a) 5 (b) [Co(NH₃)₆]₂(SO₄)₃, octahedral. (c) It forms a Copper complex, not having free Cu⁺² ions (a) Due to resonance the C-Cl bond develops double bond character / The C in Chlorobenzene	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13 14 14 15 16 17	 (a)Depending upon size of the particles. (b)It causes coagulation of the colloidal particles of cloud. (© The colloidal particles of clay get coagulated by the ions of the electrolytes. (a)The impurities are more soluble in the melt than in solid state of the metal, eg., Germanium/Silicon. (b)Low melting metals with high melting impurities are heated, and made to flow on sloping surface. eg-Tin, lead OR Calcination: Heating of concentrated ore in limited supply or absence of air or oxygen Eg., ZnCO₃(s) Heat→ ZnO(s) + CO₂(g) Roasting : Heating of concentrated ore in presence of air or oxygen Eg., 2ZnS(s) + 3O₂(g) (or any other correct example) (a)Because O-H bond is stronger than S-H bond / Due to strong H-bonding in water. (b)Bi⁺³ more stable due to inert pair effect, so Bi⁺⁵ gets reduced to +3 state. (© Due to its affinity for water . (a) 5 (b) [Co(NH₃)₆]₂(SO₄)₃, octahedral. (c) It forms a Copper complex, not having free Cu⁺² ions (a) Due to resonance the C-Cl bond develops double bond character / The C in Chlorobenzene is in sp² hybridised state but it is in sp³ state in chloromethane (b) (CH₃)₂CHCl < CH₃CH₂Cl < CH₃Br (c) 1-Chloro-6-methylcyclohexene 	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1, \frac{1}{2}\\ 1, \frac{1}{2}\\ 1\\ \frac{1}{2}\\ 1\\ \frac{1}{2}\\ 1\\ \frac{1}{2}\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$

I	18	$(CH_3CO)_2O \xrightarrow{C_2H_5OH} CH_3COOH + CH_3COOC_2H_5$	1
		A B C	1
		$CH_3COOC_2H_5 \xrightarrow{H2O/H_+} CH_3COOH + C_2H_5OH$	1
		D	
		CH ₃ COOH $\xrightarrow{Ca(OH)2 / Heat}$ CH ₃ COCH ₃	1
		E	
		(Note: award full marks if the identification of the compounds is correct)	
	19	(a) (i) $2CH_3CHO$ <u>dil NaOH</u> $CH_3CH(OH)CH_2CHO$	1
		(ii) $R_2C=O + 4(H)$ <u>Zn-Hg/Conc,HCl</u> $R_2CH_2 + H_2$	1
		(b) $CH_3CH_2CH_3 < CH_3CHO < CH_3CH_2OH$	1
	20	(a) (i) Due to resonance in the benzene ring the lone pair of nitrogen gets delocalized in aniline	1
		(ii) Methylamine forms water soluble complex with Ag ⁺ ions	1
		(b) $NH_3 < R_3N < RNH_2 < R_2NH$	1
	21	(a) H_3N^+ -CH ₂ -COO ⁻	1
		(b) COOH-(CHOH) ₄ -COOH	1
		(c) Denaturation of albumin occurs , water soluble globular protein gets converted to water	1
		insoluble fibrous protein which absorbs the water.	_
	22	(a) Buna-S < Polythene < Nylon-66	
		(b) $CH_2=CH-CH=CH_2$ and $C_6H_5CH=CH_2$ (either name or structure)	¹ /2, ¹ /2
	• •	(c) Thermoplastic polymer	-
	23	(a) Synthetic detergents work even in hard water	1
		(b) $2C_{17}H_{35}COONa + Ca^{-1}(aq) \longrightarrow (C_{17}H_{35}COO)_2Ca$ (s) + 2 Na (aq) (or any other	1
		correct reaction of soap)	
		(c) General awareness, use of knowledge of chemistry, helping, caring, social concern.	2
	24	(a)(i) First order	1
		(ii) Due to low atmospheric pressure, water boils at low temperature.	1
		(111) $k = Ae^{-2k/M}$, if $E_a = 0$ then $k = A$, so the rate constant does not depend on temperature.	1
		$(b) \text{Kate}(\mathbf{R}) = \mathbf{K} [\mathbf{A}] [\mathbf{B}]$ $(b) \text{Rate}(\mathbf{R}) = 1 [\mathbf{A}] [\mathbf{B}]^2$	1⁄2
		(1) Kale(K_1) = K[A][B] (\mathbf{R}_1) = 0 \mathbf{R}_2 so the rate increases 0 times	1/2
		(ii) $\mathbf{P}_{2} = -k[\Lambda][\mathbf{R}]^{2}$	/2
		(II) $R_2 = R[A][D]$ $R_2 = 8R$ rate increases 8 times	1
		$R_2 = \delta R$, rate increases 6 times	
	24	(a) (i)Rate = $k(x)^n$: 3Rate = $k(27x)^n$	
		Solving the two $n = 1/3$, so order of reaction = $1/3$	
			1
		(ii)Rate = $k[A]^0[B]^0 = k$	1
		(ii)Rate = $k[A]^0[B]^0 = k$ (iii)The activation energy for combustion of fuels is generally very high, and not achieved	1
		(ii)Rate = $k[A]^0[B]^0 = k$ (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature.	1 1 1
		 (ii)Rate = k[A]⁰[B]⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = 2.303 log [R₀] 	1 1 1
		(ii)Rate = $k[A]^0[B]^0 = k$ (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [\frac{R_0}{k}]$	1 1 1 ¹ / ₂
		(ii)Rate = $k[A]^0[B]^0 = k$ (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R]	1 1 1 ¹ / ₂
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k $t_{3/4} = \frac{2.303}{k} \log [R_0]$	1 1 1 ¹ ⁄ ₂
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [\frac{R_0}{R}]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log \frac{[R_0]}{\frac{1}{4}[R_0]}$	1 1 1 ¹ / ₂
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log [R_0]$ $t_{4}R_0$]	1 1 1 1/2
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log \frac{[R_0]}{\sqrt[1]{4[R_0]}}$ = $\frac{2.303}{2.54 \times 10^{-3}} \log 4$	1 1 1 1/2
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log \frac{[R_0]}{\frac{1}{4}[R_0]}$ = $\frac{2.303}{2.54 \times 10^{-3}} \log 4$	1 1 1/2 1/2
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log \frac{[R_0]}{\frac{1}{4}[R_0]}$ = $\frac{2.303}{2.54 \times 10^{-3}} \log 4$ = $5.46 \times 10^2 \text{ s}$	1 1 1 ¹ / ₂ ¹ / ₂
		(ii)Rate = k[A] ⁰ [B] ⁰ = k (iii)The activation energy for combustion of fuels is generally very high, and not achieved at room temperature. (b) t = $2.303 \log [R_0]$ k [R] $t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log \frac{[R_0]}{^{1}4[R_0]}$ = $\frac{2.303}{2.54 \times 10^{-3}} \log 4$ = 5.46 x 10 ² s	1 1 1 1/2 1/2

25	a) $2MnO_2 + 4KOH + O_2$ Fusion $2K_2MnO_4 + 2H_2O$ (A) (B)	1
	$2K_2MnO_4 + H_2O + (O) \longrightarrow 2KMnO_4 + 2 KOH$	1
	$3MnO_4^{2-} + 4H^+ \longrightarrow 2 MnO_4^- + MnO_2 + 2H_2O$ (award full marks for identification only)	1
	(b)(i)Electronic configuration of $M = (Ar) 3d^74s^2$ Magnetic moment of $M^{2+} = \sqrt{n(n+2)} = \sqrt{3(3+2)} = 3.87$ BM (ii) Metal-metal interactions are strong in Cr due to large no of unpaired d-orbital electrons, but in Hg no unpaired d-orbital electrons hence metal-metal interactions are weak.	1
	OR	
25	 (a) Cr²⁺ changes to Cr³⁺ with stable t_{2g}³ configuration, but Mn³⁺ changes to Mn²⁺ with stable Half filled d⁵ configuration. (b) Mn²⁺ with d⁵ stable configuration has high third I.E, whereas Fe²⁺ with d⁶ configuration loses electron easily / Mn²⁺ is more stable than Mn³⁺ whereas Fe³⁺ is more stable than 	1
	Fe ²⁺ . (c) Dichromate ion and chromate ion are interconvertible with change in pH / $Cr_2O_7^{2-} + H_2O \iff 2 CrO_4^{2-} + 2H^+$ Orange Yellow pH < 7 $pH > 7$	1
	 (d) This is due to relatively poor shielding effect of 5f electrons as compared to 4f. (e) Ti (III) is less stable than Ti (IV) is more stable . 	1
26		1
26	a) Step 1: $H_2O + H^+ \rightarrow H_3O^+$	
	$>c=c<+H^{H}$	1
	Step 2: Nucleophilic attack of water on carbocation.	
	$ \begin{array}{c} H \\ - C \\ $	1⁄2
	Step 3: Deprotoriation to form an alconol.	
	$-\overset{\Pi}{\mathbf{C}} - \overset{\Pi}{\mathbf{C}} - \overset{\Pi}{\mathbf{C}} + \overset{\Pi}{\mathbf{H}} + \overset{\Pi}{\mathbf{H}} \overset{\Pi}{\mathbf{O}} \rightarrow -\overset{\Pi}{\mathbf{C}} - \overset{\Pi}{\mathbf{C}} + \overset{\Pi}{\mathbf{H}} \overset{\Pi}{\mathbf{O}} \overset{\Pi}{\mathbf{O}}$	1/2
	b) i) C_6H_5OH Zn dust / Heat C_6H_6 CH ₃ Cl / Anhy AlCl ₃ $C_6H_5CH_3$	1
	ii) $C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} C_6H_5N_2Cl \xrightarrow{H_2O/H^+} C_6H_5OH$ (or by any other correct method)	1
	c) 2-bromo-3-methylbut-2-en-1-ol	1

OR	
a) (i) Due to electron withdrawing effect of $-NO_2$ group	1
(ii) Due to resonance, C-O bond in phenol acquires a partial double bond character. In	1
ethanol, resonance is not possible / carbon in phenol is sp ² hybridised whereas in ethanol it	-
is sp ³ hybridised.	
b) i) Add neutral FeCl ₃ to both the compounds.	1
Phenol gives violet complex whereas ethanol does not.	1
ii) Heat both the compounds with I_2 and NaOH.	
Propan-2-ol gives yellow ppt of iodoform whereas methanol does not.	
(or any other correct distinguishing test)	
c) 3-Phenoxyheptane	1
	 OR a) (i) Due to electron withdrawing effect of -NO₂ group (ii) Due to resonance, C-O bond in phenol acquires a partial double bond character. In ethanol, resonance is not possible / carbon in phenol is sp² hybridised whereas in ethanol it is sp³ hybridised. b) i) Add neutral FeCl₃ to both the compounds. Phenol gives violet complex whereas ethanol does not. ii) Heat both the compounds with I₂ and NaOH . Propan-2-ol gives yellow ppt of iodoform whereas methanol does not. (or any other correct distinguishing test) c) 3-Phenoxyheptane