Chemistry-Marking Scheme 2015

Chennai- 56/1/MT

Q.N	Value points	Marks
0		
1	Dispersed phase – Solid, Dispersion medium – Liquid.	1
2	Due to incompletely filled d-orbitals in +2 oxidation state (i.e., in Cu^{2+} state.)	1
3	CH ₃ -CH ₂ -Br.	1
4	3 Faraday / 3F	1
5	1-methoxypropan-2-ol.	1
6		1,1
	i) (ii)	
7	Pentaamminecarbonatocobalt(III) chloride.	1
	Ionization isomerism	1
7	$OR $ (i) $[C_{1},C_{1}]^{2}$ (ii) $K[Z_{2},C_{1}]$	1 1
7	⁽ⁱ⁾ $[CuCl_4]^{2-}$ (ii) $K_2[Zn(OH)_4]$	1,1
8	As per Raoult's law $p_A = x_A p_A^o$	
	$P_{A}=p_{A}^{o}(1-x_{B}) = p_{A}^{o} - p_{A}^{o}x_{B}$ $(p_{A}^{o} - p_{A}) / p_{A}^{o} = x_{B}$ $\Delta p / p_{A}^{o} = X_{B} = wB MA / MB wA$ $wB MA$	
	MB =	2
0	$(\Delta p / p_A^{\circ})$ wa	1
9	(i) C_6H_5 -NH ₂ < C_6H_5 -NH-CH ₃ < CH ₃ -CH ₂ -NH ₂ .	1
10	(ii) CH_3 -NH- CH_3 < CH_3 - CH_2 - NH_2 < C_2H_5 - OH .	1
10	Rate constant is the proportionality constant that relates rate of reaction with concentration of reactants / Rate of the reaction when molar concentration of the reactant becomes unity.	1
	(i) Unit: time ⁻¹ or s ⁻¹ .	14
		$\frac{1/2}{1/2}$
	(ii) Unit: $L \mod^{-1} \operatorname{time}^{-1}$ or $M^{-1} \operatorname{s}^{-1}$.	/2
11	(i) Anion vacancies occupied by free electrons in alkali metal halides, (when they have metal excess defects) are called F-centre.	1
	(ii) When Si or Ge is doped with a trivalent impurity then electron vacancies are created called positive holes which impart electrical conduction. They are called p-type semiconductors.	1
	(iii) Ferrimagnetism is observed when the magnetic moments are aligned in parallel and antiparallel way in unequal numbers in a	1

	substance leading to small net permanent magnetic moment.	
12	log (k_2 / k_1) = (E _a / 2.303R) (T ₂ -T ₁) /T ₁ T ₂	1
	$\log \left[(8x10^{-2})/(2x10^{-2}) \right] = 20 E_a / 2.303x8.314x300x320$	1
	$E_a = [\log(4)x2.303x8.314x300x320] / 20$	
	$E_a = 55336.8 \text{ J mol}^{-1} = 55.34 \text{ kJ mol}^{-1}$.	1
13	(i) In a catalysis process when the reactants and catalyst occur in same phase, the process is called homogeneous catalysis.	1
	(ii) The process of settling of colloidal particles forming precipitate is called coagulation.	1
	(iii) Polymeric substances or macromolecules when added to suitable solvents form solutions in which the size of the macromolecules may be in colloidal range. Such colloids are known as macromolecular colloids.	1
14	(i)The impurities are more soluble in the melt of metal than in solid state of the metal.	1
	(ii) As leaching agent, thereby oxidizing the metal into soluble cyano-complex / $[Au(CN)_2]^-$.	1
	(iii) Wrought iron	
15	$\Delta T_{b} = K_{b} m$	1
15		
	$\Delta T_b = K_b (W_B x \ 1000 / M_B x W_A)$	1
	353.93-353.23= 2.52 x 1.5 x1000 / M _B x 90	1
	$M_{\rm B} = (\ 2.52 \ {\rm x} \ 1.5 \ {\rm x} \ 1000) \ / \ (0.7 \ {\rm x} \ 90)$	
	$= 60.0 \text{ g mol}^{-1}.$	1
16	(i) Because of $p\pi$ - $p\pi$ multiple bonding in nitrogen (diatomic) which is absent in phosphorus (polymeric / polyatomic).	1
	(ii) Because of decrease in tendency of sp^3 hybridisation from H_2O to H_2Te .	1
	(iii) Due to their smallest atomic sizes in respective periods, / or due	
	to the fact that they have only one electron less than the next noble gas configuration.	1
17	(i) CH ₃ - CH(OH)-CH ₃	1
	(ii) CH ₃ -CH=CH-CH ₃	1
	(iii) p-Br-C ₆ H ₄ -CO-CH ₃	1
18	 (i) Due to intramolecular H-bonding in o-nitrophenol /p- nitrophenoxide is more stabilized than o-nitrophenoxide due to more delocalization of the negative charge. 	1
	(ii) The mutual repulsion between bulky alkyl groups is stronger than	

	the l.p-l.p electronic repulsions.	
	(iii) CH ₃ ONa is not only nucleophile but also stronger base, thereby	1
	leads to elimination reaction of the alkyl halide.	1
19	(i) $C_6H_5NH_2$ <u>NaNO₂ + HC1 / 278K</u> $C_6H_5N_2C1$ <u>H₃PO₂+H₂O</u> C_6H_6	1
	(ii) CH_3 - $CONH_2 \xrightarrow{KOH + Br_2} CH_3NH_2$	1
	(iii) $C_6H_5NO_2$ <u>Sn+HCl or Fe+HCl</u> $C_6H_5NH_2$	1
	OR	
19	(i) $C_2H_5NH_2 + CH_3COCl_pyridine C_2H_5-NHCOCH_3 + HCl$	1
	(ii) $C_2H_5NH_2 + C_6H_5SO_2Cl \longrightarrow C_2H_5NH - O_2SC_6H_5 + HCl$	1
	(iii) $C_2H_5NH_2 + CHCl_3 + KOH \longrightarrow C_2H_5NC + KCl + H_2O$	1
20	(i) But-1,3-diene, Acrylonitrile; CH ₂ =CH-CH=CH ₂ , CH ₂ =CH-CN	$\frac{1}{2} + \frac{1}{2}$
	(ii) Phenol, Formaldehyde; C_6H_5OH , HCHO	1/2 + 1/2
	(iii) Tetrafluoroethylene; $CF_2=CF_2$ (Note: half mark for name/s and half mark for structure/s)	1/2 + 1/2
21	(i) Gluconic acid / COOH-(CHOH) ₄ -CH ₂ OH	1
	(ii) Peptide linkage / -NH-CO- links	1
	(iii)	
	s.no DNA RNA 1 Sugar is 2-deoxy ribose Sugar is ribose	1
	1 Sugar is 2-deoxy mode Sugar is mode 2 Double helical structure Single stranded structure	
	(or any other one correct difference)	
22	(a)(i) d^2sp^3 ; Octahedral	$\frac{1}{2} + \frac{1}{2}$
	(ii) sp ³ ; Tetrahedral	1/2 + 1/2
	(b)'en', forms chelate.	$\frac{1}{2} + \frac{1}{2}$
23	(i) Social awareness ,Health conscious, Caring , empathy,	$\frac{1}{1/2} + \frac{1}{1/2}$
	concern .(or any other two values)	
	 (ii) Cartoon display / street play/poster making (or any other correct answer) 	1
	(iii) Wrong choice and over dose may be harmful.	1
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2

24	$E_{Cell} = (E^{o}_{Ag} - E^{o}_{Ni}) - (0.0591/n) \log[Ni^{2+}/(Ag^{+})^{2}]$	1
	$= (0.80 + 0.25) - 0.02955\log(10^{-2}/10^{-6})$	1
	= 1.05 - 0.0178 = 1.0322 V	1
	$\Delta G = -n F E_{cell}$	
	$= -2 \times 96500 \times 1.0322$	$\frac{1/2}{1/2}$
	$= -199214 \text{ J mol}^{-1} = -199.2 \text{ kJ mol}^{-1}$	1
	OR	
24	(a) Molar Conductivity (Λ_m) = 1000 K / C	1/2
24	$= (1000 \text{ x } 1.06 \text{ x} 10^{-2}) / 0.1$	⁷² 1/2
	$= 106 \text{ S cm}^{-2} \text{ mol}^{-1}.$	1
	Deg. of dissociation (α) = Λ_m / Λ_m^0	1/2
	= 106 / (50.1+76.5)	
	= 0.8373	1/2
	(b) Primary battery- non rechargeable whereas secondary battery is chargeable.	$\frac{1}{2}, \frac{1}{2}$
	Eg: primary battery-dry cell, mercury cell(any one), secondary battery- lead storage battery, Ni-Cd battery(any one)	1/2 , 1/2
25	(or any other correct example)	
25	(a) (i) C_{1}^{4+} and a manufactor 2 and 1 is a state in a second value of the second value 1 is a state 1 is	
	(i) Ce^{4+} gets reverted to 3+ oxidation state in aqueous medium hence is a good oxidizing agent/ Ce is more stable in +3 oxidation state.	1
	(ii) Due to very strong metal-metal bonding (involving large no. of electrons of the d-orbitals)	1
	(iii) Mn has maximum no. of unpaired electrons in 3d-orbitals.	1
	(b)(i) $2MnO_4^- + 6H^+ + 5NO_2^- \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	1
	(ii) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{Fe}^{2+} \longrightarrow 2\operatorname{Cr}^{3+} + 6\operatorname{Fe}^{3+} + 7\operatorname{H}_2\operatorname{O}$	1
	OR	
25	(a) (i) Due to d-d transitions (involving absorption of energy in visible range) / unpaired electrons in d- orbitals.	1
	(ii) Because Cr is more stable in +3 oxidation state.	1
	(iii) Due to stability of $5f^0$, $5f^7$, $5f^{14}$ / very small energy difference / comparable energy among 5f, 6d, and 7s orbitals.	1
	(b) The overall decrease in atomic and ionic radii from La to Lu (due to poor shielding effect of 4f electrons) is called Lanthanoid contraction. Common oxidation state of Lanthanoids is +3.	1+1

26	(a) A is C ₆ H ₅ CHO; B & C/C & B are C ₆ H ₅ CH ₂ OH & C ₆ H ₅ COONa	¹⁄₂ x 4
	D is $C_6H_5CH(OH)CH_3$	
	(b) (i) C_6H_5 -CO-CH ₃ forms yellow coloured CHI ₃ on heating with I_2 +KOH / NaOH but C_6H_5 -CO-CH ₂ -CH ₃ does not / equation form.	1
	(ii) With neutral FeCl_{3} , phenol gives violet coloration but benzoic acid does not. (any other suitable test).	1
	(c) CHO OH	1
	OR	
26	(a) (i) CH ₃ CH(OH)CN	1
	(ii) CH ₃ CH=N-NH ₂ (iii) CH ₃ CH ₂ OH	1 1
	(b) C_6H_5 -CO-CH ₃ < CH ₃ -CO-CH ₃ < CH ₃ -CHO	1
	(c) CH ₃ CHO gives yellow precipitate of CHI ₃ with I_2 + KOH but CH ₃ CH ₂ CHO does not/ equation form	1