
<u>CHEMISTRY MARKING SCHEME 2015</u> <u>PATNA</u> <u>SET -56/3/P</u>

Qu es.	Answers	Marks
1	2-Methyl prop-2-en-1-ol	1
2	Because of no unpaired electron in \mathbb{Zn}^{2+} Copper salts are coloured due to the presence of unpaired electrons in \mathbb{Cu}^{2+}	1/2 +1/2
3	(CH ₃) ₃ C-Br	1
4	2F or 2x 96500C	1
5	Dispersed phase-liquid Dispersion medium- solid	1/2 +1/2
6	Dichloridobis-(ethane-1,2-diamine)platinum(IV)	1
	Geometrical or optical isomerism OR	1
6	(i) $[Co(NH_3)_6]Cl_3$ (ii) $K_2[NiCl_4]$	1 1
7	(i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1
	(ii) $NH_{a} \qquad NH_{a} \qquad NH_{a} \qquad NH_{a}$ $V \rightarrow V \rightarrow$	1
8	Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
	Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1
9		1,1
10	(i) (ii) Decrease in concentration of reactant or increase in concentration of product per unit time	1
	Factors: 1)concentration of reactant2)catalyst 3) temperature 4)Nature of reactant 5)pressure 6)surface area (any two)	1/2 +1/2

11		1
	$CH_3 - CH_2 - C - CH_3$	
	i) CH3	
	H_{ii} $CH_3 - CH_2 - CH = CH - CH_3$	1
	\mathbf{Br}	
	\uparrow	1
	iii) CH ₃	
12	, 	1
	(i)Because phenoxide ion is more stable than CH_3CH_2O ion / due to resonance in phenol, oxygen acquires positive charge and releases H^+ ion easily whereas there is no resonance in	
	CH ₃ CH ₂ OH	
	(ii)Because of hydrogen bonding in ethanol	1
	(iii)Because it follows SN ₁ path way which results in the formation of stable $(CH_3)_3C^+$.	-
	(in) because it follows SN_1 path way which results in the formation of stable $(CH_3)_3C$.	1
13	$\Delta T = K m$	
	$\Delta T_{f} = K_{f} m$ $T_{f}^{0} = T_{f} - K_{f} W_{p} \times 1000$	1
	$T_{f}^{0} - T_{f} = \frac{K_{f}W_{B} \times 1000}{M_{B} \times W_{A}}$	
	21 5 1000	1
	273K - $T_f = 1.86K \text{ kg mol}^{-1} \text{ x } \frac{31g}{62gmol^{-1}} \text{ x } \frac{1000}{500kg}$	
	$T_f = (273-1.86) \text{ K}$	
	$T_f = 271.14K$ Or $-1.86^{\circ}C$	1
14	(i)Unit cells having constituent particles at the corner positions.	1
	(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.	1
	(iii) The permanent magnetism which arises when magnetic moments of substance are aligned in same direction.	1
15	$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$K_1 = 2.303R + T1 + T2$	
	$\log \frac{4 x 10^{-2}}{2 x 10^{-2}} = \frac{E_a}{2.303 x 8.314 J/K/mol} \left[\frac{1}{300} - \frac{1}{310}\right]$	
	10 9 2 2 $^{10^{-2}}$ $^{-2}$ $^{$	
	$log2 = \frac{E_a}{19.147 / mol} \left[\frac{10}{300 x 310}\right]$	1
	~ 19.147J/mol ~300x310 ~	
	$E_a = \frac{0.3010 x 19.147 x 300 x 310}{10}$	1
	$E_a = 53598 J/mol or 53.598 \ kJ \ /mol$	
L	-u	1

16	$(i)[CoF_6]^{3-}$ sp ³ d ² octahedral	1/2 1/2
	(ii) $[Ni(CN)_4]^{2-}$ dsp ² square planar	1/2 1/2
	(b) CO, because of synergic /back bonding with metal	1/2 1/2
17	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the	1
1,	particles of dispersion medium.	-
	(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.	1
	(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate	
	together to form species having size in the colloidal range.	1
18	(i)Greater solubility of impurities in molten state.	1
	(ii)Silica reacts with impurity FeO to form slag (FeSiO ₃) / acts as a flux to remove impurities.	1
	(iii)Cast iron is harder than pigiron / has lesser content of carbon.	1
19	i)Buna – S Butadiene Styrene	1/2
	$CH_2 = CH - CH = CH_2 \qquad C_6H_5CH = CH_2.$	1/2
	ii)Glyptal Ethylene Glycol Pthalic acid	
	COOH	1⁄2
		1⁄2
	Соон	
	HO–CH ₂ CH ₂ –OH	
	iii)Polyvinyl chloride Vinyl Chloride CH₂=CH-CI	
		1/2 1/2
20	(Note: half mark for name/s and half mark for structure/s)	
20	CH = N - OH	
	(CHOH)4	1
	CH ₂ OH	
	i)	
	(ii)Because of zwitter ion nature of amino acid / $R-CH-C-O^{+}$	
	R-CH-CH-O	
	+NTT	1
	(ii)Because of zwitter ion nature of amino acid / NH ₃	
	(iii)Because vitamin C is soluble in water.	1
		-

24		
24	 a) i) Due to lanthanoid contraction. ii) Due to incomplete filling of d- orbitals/ comparable energies of (n-1)d & ns electrons. iii)Because it undergoes disproportionation reaction in aqueous solution/ oxidation of a metal in a solvent depends on the nature of the solvent. Cu⁺ is unstable in water thats why it undergoes oxidation. 	1 1 1
	$2MnO_{-} + 4KOH + O_{-} \rightarrow 2K_{-}MnO_{-} + 2H_{-}O_{-}$	1
	i) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1
	II) $2Na_2CIO_4 + 2H \rightarrow Na_2CI_2O_7 + H_2O + 2Na$	1
	OR	
24	a) (i) Because of high $\Delta a H^{o} \& low \Delta_{hyd} H^{o}$. (ii)Because of more stability of $Mn^{2+} (3d^{5})$ (iii)Cr ²⁺ , because in +3 oxidation state Cr is more stable (t ³ _{2g} orbital)	1 1 1⁄2 , 1⁄2
	 b) Due to comparable energies of 5f ,6d,7s orbitals. Both show contraction in size/ both show main oxidation state +3/both are electro positive and very reactive/ both exhibit magnetic and spectral properties. (any one) 	1
25	OH	
	a) $CH_3CO CI CH_3 CHO CH_3CH- CH_2- CHO CH_3CH= CH- CHO (A) (B) (C) (D)$	$\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{2}$
	b) i)On adding Tollen's reagent C ₆ H ₅ CHO forms silver mirror whereas C ₆ H ₅ COCH ₃ does not.	1
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl benzoate does not.	1
	c) CH ₃ CH ₂ - CH- CHO	1
	CH ₃	
25	OR	
	a)i) CH ₃ CH ₂ CH ₃	1
	ii) CH ₃ –C=N-NHCONH ₂	

		1
	CH ₃	1
	CH_3	
	iii)CH ₃ — C –OH	1
	 CH ₃	
	b) $CH_3CHO < CH_3CH_2OH < CH_3COOH$	1
		1
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	1
26	Mg Mg ²⁺ (0.001) Cu ²⁺ (0.0001M) Cu	
	$E^{0}_{Cell} = E^{0}_{R} - E^{0}_{L}$	
	=[0.34-(-2.37)]V	
	=2.71V	
	$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[Cu2+]}$	1
	$=2.71 \text{V} - \frac{0.059}{2} \text{V} \log 10^{-3} / 10^{-4}$	
	$=2.71-0.0295 \text{ V} \log 10$	1
	=2.71-0.0295	
	=2.6805 V	1
	$\Delta G = -nFE_{cell}$	1/2
	$= -2x96500 \text{ C mol}^{-1} \text{ x}2.68 \text{ V}$	⁷² ¹ / ₂
	$= -517240 \text{Jmol}^{-1}$	
	= -517.240 kJ/mol	1
	OR	
26	a) $M=0.20M$ $K = 2.48X10^{-2}S/cm$	
	$\Lambda_m = \frac{K}{M} \ge 1000 \text{ Scm}^2/\text{mol}$	1/2
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$, -
	= 124 Scm ² /mol	1
	$\alpha = \frac{\Lambda_m}{\Lambda_m^0}$	
	\wedge_m °	1⁄2

$$\Lambda_m^0 = \lambda^0 K^+ + \lambda C l^-$$

$$= 73.5 + 76.5$$

$$= 150$$

$$\alpha = \frac{124}{150} = 0.82 \quad \text{Or} \qquad 82\%$$
Primary battery or cell, potential remains constant throughout its life.
1.1