CHEMISTRY MARKING SCHEME PATNA SET -56/2/P

Qu es.	Answers	Marks
1	Because of no unpaired electron in \mathbf{Zn}^{2+}	1/2 +1/2
	Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺	
2	(CH ₃) ₃ C-Br	1
3	2F or 2x 96500C	1
4	Dispersed phase -liquid Dispersion medium - solid	1/2 +1/2
5	2-Methylprop-2-en-1-ol	1
6		1,1
7	Dichloridobis-(ethane-1,2-diamine)platinum(IV)	1
	Geometrical or optical isomerism	
	OR	1
	$(1)[CO(INH_3)_6]CI_3$	1
	(ii)K ₂ [NiCl ₄]	1
8	Decrease in concentration of reactant or increase in concentration of product per unit time	1
	Factrors: 1)concentration of reactant2)catalyst3) temperature4)Nature of reactant	
	5)pressure 6)surface area (any two)	1⁄2 +1⁄2

9	$(i) C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1
	(ii)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
10	Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
	Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1
11	 (i)Greater solubility of impurities in molten state. (ii)Silica reacts with impurity FeO to form slag (FeSiO₃) / acts as a flux to remove impurities. (iii)Cast iron is harder than pig iron / has lesser content of carbon. 	1 1 1
12	(i)Because of the presence of triple bond between two N atoms / high bond dissociation enthalpy (ii)Because of the lowest bond dissociation enthalpy /least thermal stability	1
	(iii)Because of low solubility in blood.	1
13	(i) $[CoF_6]^{3-}$ sp ³ d ² octahedral	1/2 1/2
	(ii) $[Ni(CN)_4]^{2-}$ dsp ² square planar	1/2 1/2
1.4	(b) CO, because of synergic /back bonding with metal	1/2 1/2
14	(i) $C_6H_5CONH_2$ $Br_2 + KOH$ $C_6H_5NH_2$	1
	(ii) $C_6H_5NH_2$ $NaNO_2 + HCl$ $0 - 5 C^0$ $C_6H_5N^+_2Cl^-$ H_2O C_6H_5OH	
		1
	(iii) CH ₃ CN $\xrightarrow{\text{LIAIH}_4}$ CH ₃ CH ₂ NH ₂	1
	OR	

22	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles	1
	of dispersion medium.	1
	(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.	1
	together to form species having size in the colloidal range.	1
23	i) Caring ,concerned, helping,empathy (any two)	1/2 1/2
	ii) By organizing competitions like slogan writing, poster making and talk in the morning	1
	assembly (any other correct answer)	1
	11) Used to treat depression, Iproniazid/phenelzine (any other correct example)	1/2 1/2
	(any other correct example)	1
24		
	Mg Mg ²⁺ (0.001) Cu ²⁺ (0.0001M) Cu	
	$E^0_{Cell} = E^0_R - E^0_L$	
	=[0.34-(-2.37)]V	
	=2.71V	
	[Ma2+]	1
	$E_{cell} = E_{cell}^{o} - \frac{\cos v}{n} V \log \frac{\cos v}{[cu2+]}$	1
	$=2.71 \text{V} - \frac{0.059}{2} \text{V} \log 10^{-3}/10^{-4}$	1
	=2.71-0.0295 V log 10	
	=2.71-0.0295	
	=2 6805 V	1
	$\Delta G = -nFE_{rot}$	
	$-2x06500 \text{ Cm}^{-1}x 2.68 \text{ V}$	1⁄2
	= -2x96500 C mol x 2.68 V	1⁄2
	$= -517240 \text{ Jmol}^{-1}$	
	= -517.240 kJ/mol	1
	OR	
24	a) $M=0.20M$ $K=2.48X10^{-2}S/cm$	
	$\Lambda = -\frac{K}{K} \times 1000 \text{ Scm}^2/\text{mol}$	
	$M_m = M_M \times 1000$ Bern / mor	1/2
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$	
	-124 Scm ² /mol	1
		1
	$\alpha = \frac{\Lambda_m}{1 + \Omega}$	
	\wedge_m °	1/2
	$\Lambda_m^0 = \lambda^0 K^+ + \lambda C l^-$	
L		L

	=73.5+76.5	
	= 150.5	
	$\alpha = \frac{124}{150} = 0.82$ Or 82%	1
	b) Primary battery or cell, potential remains constant throughout its life.	11
25	a)	1,1
	i) Due to lanthanoid contraction.	
	ii) Due to incomplete filling of d- orbitals / comparable energies of (n-1)d & ns	1
	electrons.	1
	iii)Because it undergoes disproportionation reaction in aqueous solution/oxidation	
	of a metal in a solvent depends on the nature of the solvent. Cu' is unstable in water thats why it undergoes evidation	1
	thats why it undergoes oxidation.	
	b)	
	$\frac{2\text{MnO}_2 + 4\text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}_4}{10}$	
	ii) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1
	OR	1
25	a) (i) Because of high $\Delta a H^{\circ} \& low \Delta_{hyd} H^{\circ}$. (ii)Because of more stability of $Mn^{2+}(3d^5)$	1
	(iii) Cr^{2+} , because in +3 oxidation state Cr is more stable (t^{3}_{2g} orbital)	1
		1/2 , 1/2
	b) Due to comparable energies of 5f,6d,7s orbitals.	
	Both show contraction in size/ both show main oxidation state +3/both are electro positive	1
	and very reactive/ both exhibit magnetic and spectral properties. (any one)	1

26	OH	
	a) $CH_3CO CI$ $CH_3 CHO$ $CH_3CH- CH_2- CHO$ $CH_3CH= CH- CHO$ (A) (B) (C) (D)	1/2 ,1/2
	b) i)On adding Tollen's reagent C ₆ H ₅ CHO forms silver mirror whereas C ₆ H ₅ COCH ₃ does not.	1/2, 1/2
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl benzoate does not.	1 1
	c) CH ₃ CH ₂ - CH- CHO	1
	ĊH ₃	
26	ŬŔ.	1
	a)i) CH ₃ CH ₂ CH ₃	
	ii) $CH_3 - C = N - NHCONH_2$	1
	CH_3	
	$\begin{array}{c} CH_3 \\ \\ iii)CH_3 - C - OH \end{array}$	1
	CH_3	1
	b) $CH_3CHO < CH_3CH_2OH < CH_3COOH$	
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	1