
CHEMISTRY MARKING SCHEME 2015 PATNA SET -56/1/P

Qu es.	Value points	Marks
1	2F or 2x 96500C	1
2	Dispersed phase -liquid Dispersion medium - solid	1/2 +1/2
3	Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺	1/2 +1/2
4	2-Methyl prop-2-en-1-ol	1
5	$(CH_3)_3C-Br$	1
6.	Because on addition of a non- volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
	Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1
7.	Decrease in concentration of reactant or increase in concentration of product per unit time	1
	Factrors: 1)concentration of reactant 2)catalyst 3) temperature 4)Nature of reactant	
	5)pressure 6)surface area (any two)	1/2 +1/2
8.	S P Xc F	1,1
	(i) F F	
9	Dichloridobis-(ethane-1,2-diamine)platinum(IV)	1
	Geometrical or optical isomerism	1
	OR	
9.	$(i)[Co(NH_3)_6]Cl_3$	1
	$(ii) \mathbf{K}_2[\mathbf{NiCl_4}]$	1
10	$(i) C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1

	(ii)	
	NH ₂ NH ₂ NH ₂ NH ₂	1
	NO ₂ CH ₃	
11	$\Delta T_{f} = K_{f} m T_{f}^{0} - T_{f} = \frac{K_{f}W_{B} \times 1000}{M_{B} \times W_{A}}$	1
	$273 \text{K} - \text{T}_{\text{f}} = 1.86 \text{K kg mol}^{-1} \text{ x} \frac{31g}{62gmol^{-1}} \text{ x} \frac{1000}{500kg}$	1
	$T_f = (273-1.86) \text{ K}$ $T_f = 271.14 \text{K} \text{Or} -1.86^{0} \text{C}$	1
12	(i) Unit cells having constituent particles at the corner positions.	1
	(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.(iii) The permanent magnetism which arises when magnetic moments of substance are aligned in same direction.	1 1
13	$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$\log \frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_a}{2.303 \times 8.314 J/K/mol} \left[\frac{1}{300} - \frac{1}{310}\right]$	
	$log2 = \frac{E_a}{19.147J/mol} \qquad \left[\frac{10}{300x310}\right]$	1
	$E_a = \frac{0.3010 \times 19.147 \times 300 \times 310}{10}$	
	$E_a = 53598 J/mol$ or $53.598 kJ/mol$	1
14	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles of dispersion medium.	1
	(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.	1
	(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range.	1
15	(i)Greater solubility of impurities in molten state.	1
	(ii)Silica reacts with impurity FeO to form slag (FeSiO ₃) / acts as a flux to remove impurities. (iii)Cast iron is harder than pig iron / has lesser content of carbon.	1 1
16	(i)Because of the presence of triple bond between two N atoms / high bond dissociation	1
	enthalpy (ii)Because of the lowest bond dissociation enthalpy /least thermal stability. (iii)Because of low solubility in blood.	1 1
17	$(i)[CoF_6]^{3-}$ sp ³ d ² , octahedral	1/2 1/2

	(ii) $[Ni(CN)_4]^{2-} dsp^2$, square planar	1/2	1/2
	(b) CO, because of synergic /back bonding with metal	1/2	1/2
18	$CH_3 - CH_2 - C - CH_3$ i)	1	
	$_{ii)} \qquad CH_3 - CH_2 - CH = CH - CH_3$	1	
	Br CH ₃	1	
19	(i)Because phenoxide ion is more stable than CH ₃ CH ₂ O ion / due to resonance in phenol, oxygen acquires positive charge and releases H ⁺ ion easily whereas there is no resonance in CH ₃ CH ₂ OH	1	
	 (ii)Because of hydrogen bonding in ethanol (iii)Because it follows S N1 path way which results in the formation of stable (CH₃)₃C +. 	1	
20	(i) $C_6H_5CONH_2$	1	
	(ii) $C_6H_5NH_2$ $\xrightarrow{NaNO_2 + HC1} \longrightarrow C_6H_5N^+_2Cl^- \longrightarrow C_6H_5OH$	1	
	(iii) CH ₃ CN CH ₃ CH ₂ NH ₂	1	
	OR		

23	 i) Caring ,concerned, helping,empathy (any two) ii) By organizing competitions like slogan writing, poster making and talk in the morning 	1/2 1/2
	assembly (any other correct answer) iii) Used to treat depression,. Iproniazid/phenelzine (any other correct example) iv) Saccharin/ sucralose/aspartame/alitame (any other correct example)	1/2 1/2
24	OH	
	a) CH_3CO CI CH_3 CHO $CH_3CH CH_2 CHO$ $CH_3CH=$ $CH CHO$ (A) (B) (C) (D)	1/2 ,1/2 1/2, 1/2
	b) i)On adding Tollen's reagent C_6H_5CHO forms silver mirror whereas $C_6H_5COCH_3$ does not.	1
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl benzoate does not.	1
	c) CH ₃ CH ₂ - CH- CHO CH ₃ CH ₃	1
24	OR	
	a)i) CH ₃ CH ₂ CH ₃	1
	ii) CH ₃ – C=N-NHCONH ₂	1
	CH_3 CH_3	
	iii)CH ₃ — C –OH	1
	$_{\text{CH}_3}^{\text{CH}_3}$ b) CH_3CHO < $\text{CH}_3\text{CH}_2\text{OH}$ < CH_3COOH	1
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	1

Mg | Mg $^{2+}$ (0.001) | Cu $^{2+}$ (0.0001M) | Cu $E^{0}_{Cell} = E^{0}_{R} - E^{0}_{L}$ =[0.34-(-2.37)] V=2.71V $E_{\text{cell}} = E_{\text{Cell}}^{\text{o}} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[Cu2+]}$ $=2.71V - \frac{0.059}{2} V log 10^{-3}/10^{-4}$ 1 =2.71-0.0295 V log 10 =2.71-0.0295 =2.6805 V 1 1/2 $\Delta G = -nFE_{cell}$ $= -2x96500 \text{ C mol}^{-1} \text{ x } 2.68 \text{ V}$ $= -517240 \text{ Jmol}^{-1}$ 1 = -517.240 kJ/molOR 25. $K = 2.48X10^{-2}S/cm$ M = 0.20M $\Lambda_m = \frac{K}{M} \times 1000 \text{ Scm}^2/\text{mol}$ 1/2 $\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$ $= 124 \text{ Scm}^2/\text{mol}$ $\alpha = \frac{\Lambda_m}{\Lambda_m^0}$ 1/2 $\Lambda_m^0 = \lambda^0 K^+ + \lambda C l^-$ =73.5+76.5= 1501 $\alpha = \frac{124}{150} = 0.82$ Or 82% b) Primary battery or cell, potential remains constant throughout its life. 1,1

26		
	a)	
	i) Due to lanthanoid contraction.	1
	ii) Due to incomplete filling of d- orbitals / comparable energies of (n-1)d & ns electrons.	1
	iii)Because it undergoes disproportionation reaction in aqueous solution/ oxidation of a metal in a solvent depends on the nature of the solvent. Cu ⁺ is unstable in water thats why it undergoes oxidation.	1
	b)	
	i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	ii) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1
	OR	
26.	a) (i) Because of high $\Delta a H^o$ & low $\Delta_{hyd} H^o$.	
	(ii) Because of more stability of Mn^{2+} (3d ⁵)	1
	(iii) Cr^{2+} , because in +3 oxidation state Cr is more stable ($\operatorname{t}^{3}_{2g}$ orbital)	1 1/2, 1/2
	b) Due to comparable energies of 5f,6d,7s orbitals. Both show contraction in size/ both show main oxidation state +3/both are electro positive and	1
	very reactive/ both exhibit magnetic and spectral properties. (any one)	1