MARKING SCHEME CHEMISYRY

(CODE NO. : 56/3/C)

Q	Value points	Mark
1	White phosphorous, because of angular strain in P_4 molecule/ discrete tetrahedral unit.	1/2 , 1/2
2		1⁄2
	CH ₃	
	H₃C−Ċ−Br	
	ĊH ₃	
	Because carbocation intermediate derived from $(CH_3)_3$ CBr is more stable than carbocation from CH_3CH_2Br .	1⁄2
3	(i)Electrophoresis (ii) by mixing two oppositely charged sols (iii) by boiling (iv) by persistent dialysis (v) by addition of electrolyte (any one)	1
4	X ₄ Y ₃	1
5	2-Methylpropane-1,3-diol	1
6	Greater number of unpaired electrons, greater the interatomic interactions leading	1
	Zn ,no unpaired electrons hence weak metallic bonding.	1⁄2 ,1⁄2
7	(i) pentaamminenitrito-N-cobalt(III) nitrate	1
	(ii) $K_2[Ni(CN)_4]$	1
0	(a) $\mathbf{H}^{+}(\mathbf{a},\mathbf{a}) + \mathbf{a} = \sum \frac{1}{2} \mathbf{H}(\mathbf{a})$	1/ 1/
0	(a) Π (aq) + e^{-7} 1/2 Π_2 (g) $E^{\circ} = 0.00$ V is feasible at cathode because its reduction potential is higher	72,72
	than the other reaction.	
	b. Because the overall reaction doesn't involve any ion in the solution whose concentration changes during its lifetime.	1
9	(i) CH_3MgBr , H_3O^+	1
	(ii) Cl ₂ , P	1
10	It states that solubility of gas in liquid is directly proportional to partial pressure of the gas in equilibrium with the solution.	1
	With increase in temperature K_H value increases but solubility of gas in liquid	
	decreases. / $K_H \alpha$ 1/solubility	1
	OR	
10	It states for solution containing volatile components the partial vapor pressure of each component of the solution is directly proportional to its mole fraction present in the solution.	1

	(ii) Phenol + Formaldehyde	
	+ HCHO	1
	 (iii) 1,3-Butadiene + Acrylonitrile CH₂=CH-CH=CH₂ + CH₂=CH-CN (Note: half mark for structure/s and half mark for name/s) 	1
16	(i) Starch	1
	(ii) Native Protein found in a biological system with a unique 3-D structure and biological activity is called a native protein. Denatured protein is the protein with no biological activity.	1
17	(iii) Vitamin-K	1
1/	$\Delta \mathbf{I}_{f} = \mathbf{I} \mathbf{X} \mathbf{K}_{f} \mathbf{X} \mathbf{m}$	1/2
	For $CaCl_2$ $i = 3$	1⁄2
	$\Delta T_{\rm f} = (i \ x \ K_{\rm f} \ x \ W_{\rm B} \ X \ 1000) / \ (M_{\rm B} \ x \ W_{\rm A})$	
	2 = 3 x 1.86 x W _B x 1000/ 111 X 500	1
	$W_{B} = 19.89 \text{ g}$	1
18	$d = Z x M / a^3 x N_o$	1⁄2
	$10 \text{ g/cm}^3 = \text{Z x } 81 \text{ g/mol } /(3 \text{ x } 10^{-8} \text{ cm})^3 \text{ x } (6.023 \text{ x } 10^{23} \text{ /mol})$	1⁄2
	Z = 2.007	1
	Nature of cubic unit cell = bcc	1
19	(i) $CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH_2-CH_2-Br \xrightarrow{AgF} CH_3CH_2CH_2F$ peroxide	1
	(ii) Cl $+ CH_3Cl$ $\xrightarrow{Anhyd. AlCl_3}$ CH_3	1

	$\begin{array}{ccc} PCl_3/PCl_5 & KCN \\ (iii) C_2H_5OH & \dashrightarrow \end{array} \xrightarrow{} C_2H_5Cl & \dashrightarrow \end{array} \xrightarrow{} C_2H_5CN \end{array}$	1
	OR	
	ОН	
19	O2NNO2	
	ÍOÍ	
	(i) $CH_3CH_2 CH=CH_2$ (ii) No2	1,1,1
	(iii) CH ₃ NC	
•		
20	(i) Because $-NO_2$ is an electron withdrawing group. (ii) Due to H-Bonding	1
	(iii) Reaction occurs by S $_{\rm N}$ 1 mechanism., 3 ⁰ -carbocation (CH ₃) ₃ C ⁺ is more	-
21	stable than CH_3^+	1
21	$\frac{E_{\text{cell}} - E_{\text{R}}}{= 0.00 - (-0.14)}$	
	$E^{\circ}_{cell} = +0.14V$	
	$E_{cell} = E_{cell}^{o} - 0.059 V \log \left[\frac{(Sn^{2+})}{+ 2} \right]$	1
	$n [H']^2$	
	$E_{cell} = E_{cell}^{\circ} - \frac{0.059 \text{ V}}{0.059 \text{ V}} \log \left[0.001 \right]$	1
	$= +0.14 - 0.0295 \text{ V} \log 10$	
	$E_{cell} = 0.1105 V$	1
22	(i)Because physisorption is exothermic process, so it decreases with increase in	1
	(ii)Because alum coagulates the impurities present in water.	1
	(iii) Due to continuous unbalanced bombardment / zig-zag motion of particles by	
23	the molecules of dispersion medium/ it does not allow the particles to settle down.	1
23	(ii) By organizing rallies, posters, street play, public speech(any other relevant	1
	answer)	
	(111) Anti depressant drugs are those which inhibit depression $E \propto I proniazide$ Phenelzine (or any other)	1/2 1/2
	(iv) Saccharine / Sucralose/Alitame/Aspartame(any one)	1
24	a.)Rate of reaction is defined as change in concentration of reactants or	1
	Factors: concentration of reactant, temperature, pressure, surface area	1/2 . 1/2
	(any two)	
1		1

ſ			
		b. $\log (k_2/k_1) = Ea/2.303 \text{ R} [1/T_1 - 1/T_2]$	1
		$log(8 \times 10^{-2}/4 \times 10^{-2}) = E_a/2.303 \times 8.314 [1/300 - 1/310]$	1
		$log2 = Ea/2.303 \times 8.314 [1/300 - 1/310]$ Ea = 53598.59 J/mol or 53.6 kJ/mol	1
		OR	
	24	(a)(i) Rate becomes 4 times (ii) 2 nd order	1
		b) $t_{1/2} = \frac{0.693}{k}$	1
		23.1 min = $\frac{0.693}{k}$	
		K	
		$k = 0.03 \text{ min}^{-1}$	1
		$k = \frac{2.303}{t} \log [A_0]$	1⁄2
		$t = \frac{2.303}{0.03} \log \frac{100}{25}$	1/2
		t = <u>2.303</u> x 0.6021 min 0.03	
		t = 46.22 min	1
	25	(i) X-X' bond in inter halogens is weaker than X-X in halogens	1
		(ii) High bond dissociation energy/ due to presence of triple bond.	1
		(iii)Because bond dissociation enthalpy decreases from NH_3 to BiH_3 .	1

