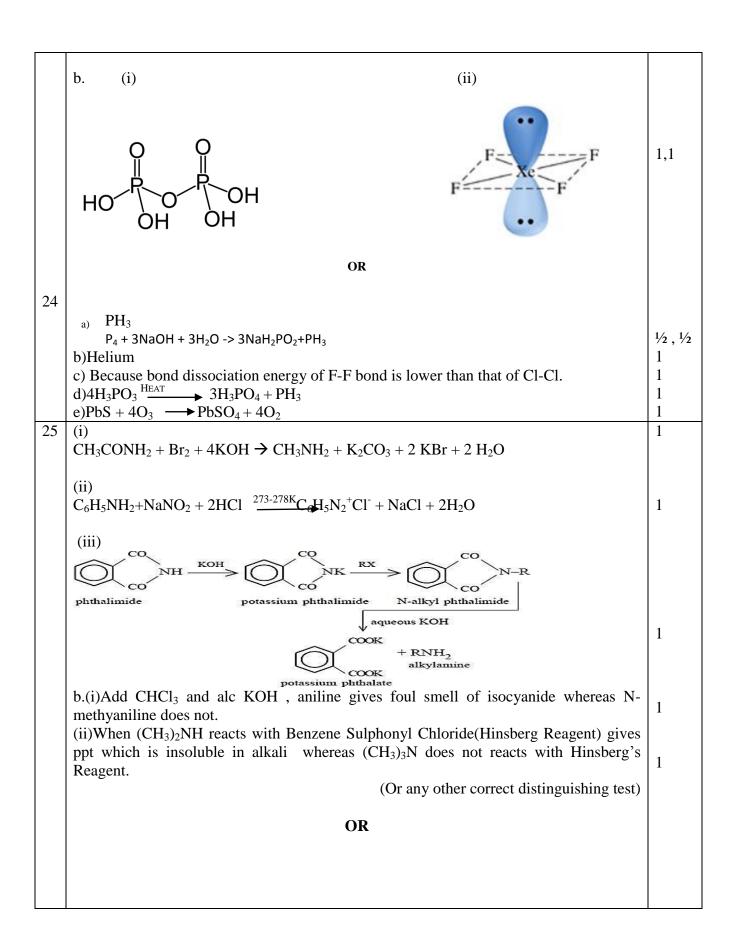
MARKING SCHEME CHEMISYRY-2015


(CODE NO.: 56/3/C)

Q		Value points	Mark	[
1	2-Methylpropane-1,3-diol		1	
2	White phosphorous, because of any	gular strain in P ₄ molecule/ discrete tetrahedral unit.	1	
3	CH₃ H₃C−C-B CH₃	Sr .	1/2	
		ate derived from (CH ₃) ₃ Br is more stable than	1/2	
4	(i)Electrophoresis (ii) by mixing persistent dialysis (v) by addition of	two oppositely charged sols (iii) by boiling (iv) by of electrolyte (any one)	1	
5	X_4Y_3		1	
6	(i) pentaamminenitrito-N-cobalt(II (ii) K ₂ [Ni(CN) ₄]	I) nitrate	1 1	
7	(i) CH ₃ MgBr , H ₃ O ⁺ (ii) Cl ₂ , P		1 1	
8	gas in equilibrium with the solution	K _H value increases but solubility of gas in liquid	1	
		OR	1	
8.	component of the solution is diresolution.	olatile components the partial vapor pressure of each ectly proportional to its mole fraction present in the	1	
	Ideal Solution	Non Ideal		
	1. It obeys Raoult's Law over entire range of concentration of solution.	It does not obey Raoult's Law.	1/2 -	_
	2.Solute – Solvent interaction	Solute – Solvent interaction is	1/2	1
	is nearly same as in pure	not same as solute-solute or		
	solvent.	solvent –solvent interactions.		
		(or any other correct difference)		
9	Greater number of unpaired electrong metallic bonding.	tron, greater is the interatomic interactions leading to	1	

	Zn, no unpaired electrons hence weak metallic bonding.	1/2 ,1/2
10	(a) H^+ (aq) + e- \rightarrow 1/2 H_2 (g) $E^\circ = 0.00$ V is feasible at cathode because its reduction potential is higher than the other reaction.	
	b. Because the overall reaction doesn't involve any ion in the solution whose concentration changes during its lifetime.	1
11	(i) CH_3 -CH= CH_2	1
	(ii) C1 C1	
	+ CH ₃ Cl Anhyd. AlCl ₃	1
	$\begin{array}{ccc} & & & & & & & \\ PCl_3/PCl_5 & & & & & \\ (iii) & C_2H_5OH & & & & \\ \hline \end{array} \rightarrow \begin{array}{ccc} & & & & \\ C_2H_5Cl & & & \\ \hline \end{array} \rightarrow \begin{array}{cccc} & & & \\ C_2H_5CN & & \\ \hline \end{array}$	1
	OR	
11	O2N NO2	
	(i) CH_3CH_2 $CH=CH_2$ (ii)	
	(iii) CH ₃ NC	1,1,1
12	(i) Because –NO ₂ is an electron withdrawing group	1
	 (ii) Due to H-Bonding (iii) Reaction occurs by S N1 mechanism 3⁰-carbocation (CH₃)₃C⁺ is more stable than CH₃⁺ 	1
13	$\Delta T_f = i \times K_f \times m$	1/2
	For $CaCl_2$ $i = 3$	1/2

	$\Delta T_f = (i \ x \ K_f \ x \ W_B \ X \ 1000) / \ (M_B \ x \ W_A)$	
	$2 = 3 \times 1.86 \times W_B \times 1000 / 111 \times 500$	1
	$W_{c} = 10.90 c$	1
	$W_{B} = 19.89 g$	1
14	$d = Z xM / a^3 x N_o$	1/2
	$10 \text{ g/cm}^3 = \text{Z x } 81 \text{ g/mol } / (3 \text{ x } 10^{-8} \text{ cm})^3 \text{ x } (6.023 \text{ x } 10^{23} \text{ /mol})$	1/2
	Z = 2.007	1
	Nature of cubic unit cell = bcc	1
15	$E^{\circ}_{\text{cell}} = E_{R}^{\ 0} - E_{L}^{\ 0}$	
	$= 0.00 - (-0.14)$ $E^{\circ}_{cell} = + 0.14V$	
	$E_{\text{cell}} = E_{\text{cell}}^0 - 0.059 \text{ V} \log \left[\text{Sn}^{2+} \right]$	1
	n $[H^{\dagger}]^2$	
	$\mathrm{E_{cell}} = \mathrm{E^{\circ}_{cell}} - 0.059 \mathrm{V_{log}} [0.001]$	1
	2 [0.01] ²	1
	$= +0.14 - 0.0295 \text{ V} \log 10$	
	$E_{cell} = 0.1105 \text{ V}$	1
16	en en en	1
	(i) en trops	
	cis trans (ii) t ₂ g ⁴ / diagram	1
	(iii) [NiCl ₄] ²⁻ -Chloride ion being weak field ligand does not pair d electrons	1
17	while in [Ni(CO) ₄], CO being strong field ligand pairs up the d electrons. (i)Because physisorption is exothermic process, so it decreases with increase in	1
1 /	temperature.	1
	(ii)Because alum coagulates the impurities present in water.	
	(iii) Due to continuous unbalanced bombardment / zig-zag motion of particles by the	
10	molecules of dispersion medium / it allows the particles to settle down.	
18	8 (i) van Arkel method (ii) CO acts as reducing agent	
	(iii) Because ΔS becomes more positive, and ΔG becomes negative.	1 1

19	Н	
19		
	N O	
	H_2C	
	H_2C CH_2	
	C_{H_2}	
	(i) Caprolactum Caprolactum	1
	(i) cuprotuctum	
	(ii) Phenol + Formaldehyde	
	он	1
	HOHO	1
	+ HCHO (iii) 1,3-Butadiene + Acrylonitrile	1
	CH ₂ =CH-CH=CH ₂ + CH ₂ =CH-CN	
	(Note: half mark for structure/s and half mark for name/s)	
20	(i) Starch	1
	(ii) Native Protein found in a biological system with a unique 3-D structure and	1
	biological activity is called a native protein. Denatured protein is the protein with no biological activity.	1
	(iii) Vitamin-K	1
21	(i) CH ₃ – CH(OH) – CN	1
	(ii) C ₆ H ₅ COOH	1
	(iii)CH ₃ CONH ₂	1
22	(a)(i) Because actinoids are radioactive and show wide range of oxidation states.	1
	(ii) Transition metals form complex compounds due to - small size, high ionic charge, availability of d orbitals	1
	availability of a officials	1
	b. $2\text{MnO}_4^- + 6\text{H} + 5 \text{SO}_3^{2-} \rightarrow 5\text{SO}_4^{2-} + 3\text{H}_2\text{O} + 2 \text{Mn}^{2+}$	1
23	(i) Concern, Compassion, caring, empathy (any two)	1/2 , 1/2
	(ii) By organizing rallies , street play, posters , public speech(any other relevant	1
	answer)	
	(iii) Anti depressant drugs are those which inhibit depression E.g. Iproniazide, Phenelzine (or any other)	1/2 , 1/2
	(iv) Saccharine / Sucralose/Alitame/Aspartame(any one)	1
24	(i) X-X' bond in inter halogens is weaker than X-X in halogens	1
	(ii) High bond dissociation energy/ due to presence of triple bond.	1
	(iii)Because bond dissociation enthalpy decreases from NH ₃ to BiH ₃ .	
	(m) Decease cond dissociation entitally decreases from 1413 to Diffs.	1

25	a. (i) (ii) (iii)	
	CN OH	1,1,1
	b. (i) $(CH_3)_3N < C_2H_5NH2 < C_2H_5OH$ (ii) p-nitoaniline < aniline < p-methylaniline	1 1
26	a. Rate of reaction is defined as change in concentration of reactants or products per unit time.	1
	Factors: concentration of reactant, temperature, pressure, surface area (any two)	1/2 , 1/2
	b. $log(k_2/k_1) = Ea/2.303R [1/T_1 - 1/T_2]$	1
	$\log (8 \times 10^{-2}/4 \times 10^{-2}) = E_a/2.303 \times 8.314 [1/300 - 1/310]$	1
	log2 = Ea/2.303 x 8.314 [1/300 – 1/310] Ea = 53598.59 J/mol or 53.6 kJ/mol	1
	OR	
26	(a)(i) Rate becomes 4 times (ii) 2 nd order	1 1
	b) $t_{1/2} = 0.693$	
	23.1 min = $\frac{0.693}{k}$	
	$k = 0.03 \text{min}^{-1}$	1
	$k = \frac{2.303}{t} \log [A_0]$	1/2
	t = <u>2.303</u> log <u>100</u> 0.03 25	1/2

t = <u>2.303</u> x 0.6021 min 0.03	
t = 46.22 min	1