MARKING SCHEME CHEMISYRY-2015

(CODE NO.: 56/1/C)

Questio ns	Value points			
1	(i)Electrophoresis (ii) by mixing two oppositely charged sols (iii) by boiling (iv) by persistent dialysis (v) by addition of electrolyte (any one)			
2	X_4Y_3	, , , , , , , , , , , , , , , , , , ,	1	
3		ngular strain in P ₄ molecule/ discrete tetrahedral	1/2 , 1/2	
4	2-Methylpropane-1,3-diol		1	
5			1/2	
		Br 3 te derived from $(CH_3)_3CBr$ is more stable than	1/2	
	carbocation from CH ₃ CH ₂ Br.			
6	It states that solubility of gas in liquid is directly proportional to partial pressure of the gas in equilibrium with the solution. With increase in temperature K _H value increases but solubility of gas in liquid			
	decreases. / $K_H \alpha 1/\text{solubilit}$	· · · · · · · · · · · · · · · · · · ·		
		OR	1	
6	It states for solution containing volatile components the partial vapor pressure o each component of the solution is directly proportional to its mole fraction presen in the solution.			
	Ideal Solution	Non Ideal	1	
		It does not obey Raoult's Law.		
		Soluto Solvent interaction is		
	2.Solute – Solvent interaction	Solute – Solvent interaction is	1,	
	is nearly same as in pure	not same as solute-solute or	$\frac{1}{2}$ + $\frac{1}{2}$	
	solvent.	solvent –solvent interactions. (or any other correct difference)	72	
			4, 1,	
7	(a) $H^{+}(aq) + e^{-} \rightarrow 1/2H_{2}(g)$ $E^{\circ} = 0.00V$ is feasible at than the other reaction.	cathode because its reduction potential is higher	1/2 , 1/2	
	b. Because the overall reaction doesn't involve any ion in the solution whose			

	concentration changes during its lifetime.	
8	Greater number of unpaired electrons, greater would be the interatomic interactions and thus strong metallic bonding. Zn , no unpaired electrons hence weak metallic bonding.	1 1/2 ,1/2
9	(i) pentaamminenitrito-N-cobalt(III) nitrate (ii) K ₂ [Ni(CN) ₄]	1 1
10	(i) CH ₃ MgBr, H ₃ O ⁺ (ii) Cl ₂ , P	1 1
11	$\Delta T_f = i \times K_f \times m$	1/2
	For $CaCl_2$ $i = 3$	1/2
	$\Delta T_f = (i \ x \ K_f \ x \ W_B \ X \ 1000) / (M_B \ x \ W_A)$	
	$2 = 3 \times 1.86 \times W_B \times 1000 / 111 \times 500$	1
	$W_B = 19.89 g$	1
12	$d = Z xM / a^3 x N_o$	1/2
	$10 \text{ g/cm}^3 = \text{Z x } 81 \text{ g/mol} / (3 \text{ x } 10^{-8} \text{ cm})^3 \text{ x } (6.023 \text{ x } 10^{23} \text{ /mol})$	1/2
	Z = 2.007	1
	Nature of cubic unit cell = bcc	1
13	$\begin{split} E^{\circ}_{cell} &= E_{R}^{\ 0} - E_{L}^{\ 0} \\ &= 0.00 - (\text{-}0.14) \\ E^{\circ}_{cell} &= + 0.14 V \\ E_{cell} &= E^{\circ}_{cell} - \underline{0.059 \ V} \ log \ \underline{[\ Sn^{2+}]} \\ n &= \underline{[\ H^{+}]^{2}} \end{split}$	1
	$\begin{split} E_{cell} = & E^{\circ}_{cell} - \underline{0.059 \ V} \ log \ \underline{[\ 0.001]}^2 \\ & = & +0.14 - 0.0295 \ V \ log 10 \\ E_{cell} = & 0.1105 \ V \end{split}$	1
14	(i)Because physisorption is exothermic process, so it decreases with increase in	1
	temperature. (ii)Because alum coagulates the impurities present in water. (iii) Due to continuous unbalanced bombardment / zig-zag motion of particles by	1
	the molecules of dispersion medium / it does not allow the paticles to settle down.	1
15	(i) van Arkel method (ii) CO acts as reducing agent	1 1
	(iii) Because ΔS becomes more positive, and ΔG becomes negative.	1

16	. (a)(i) Because actinoids are radioactive and show wide range of oxidation states.(ii) Transition metals form complex compounds due to small size, high ionic	1
	charge, availability of d orbitals	1
	b. $2MnO_4^- + 6H + + 5 SO_3^{2-} \rightarrow 5SO_4^{2-} + 3H_2O + 2 Mn^{2+}$	1
17	(i) en en	1
	cis trans	1
	(ii) t ₂ g ⁴ / diagram (iii) [NiCl ₄] ²⁻ -Chloride ion being weak field ligand does not pair d electrons	-
	while in [Ni(CO) ₄], CO being strong field ligand pairs up the d electrons.	1
18	HBr AgF (i) CH_3 - CH = CH_2 - CH_3 - CH_2 - CH_2 - Br	1
	(ii) Cl Cl	
	+ CH ₃ Cl Anhyd. AlCl ₃	1
	$\begin{array}{ccc} & & & & & & \\ PCl_3/PCl_5 & & & & & \\ (iii) & C_2H_5OH & & & & \\ \hline \end{array} \rightarrow C_2H_5Cl & & & \\ \hline \rightarrow & C_2H_5CN & & \\ \end{array}$	1
	OR	
18	O2N NO2	1,1,1
	(i)CH ₃ CH ₂ CH=CH ₂ (ii)	
	(iii) CH ₃ NC	
19	(i) Because –NO ₂ is an electron withdrawing group	1
	(ii) Due to H-Bonding	1

	(iii) Reaction occurs by S_N1 mechanism , 3^0 -carbocation $(CH_3)_3C^+$ is more stable than CH_3^+	1
20	(i) CH ₃ - CH(OH) - CN	1
20	(ii) C ₆ H ₅ COOH	1
	(iii) CH ₃ CONH ₂	1
21	(i) Caprolactum (i) Caprolactum	1
	(ii) Phenol + Formaldehyde	1
	TICHO TICHO	1
	+ HCHO (iii) 1,3-Butadiene + Acrylonitrile	1
	CH ₂ =CH-CH=CH ₂ + CH ₂ =CH-CN (Note: half mark for structure/s and half mark for name/s)	
22	(i) Starch	1
	(ii) Native Protein found in a biological system with a unique 3-D structure and	
	biological activity is called a native protein.	1
	Denatured protein is the protein with no biological activity.	
	(iii) Vitamin-K	1
23	(i) Concern, Compassion, caring, empathy (any two)(ii) By organizing rallies , street play, posters, public speech(any other relevant answer)	1/2, 1/2
	(iii) Anti depressant drugs are those which inhibit depression	
	E.g. Iproniazide, Phenelzine (or any other)	1/2 , 1/2
	(iv) Saccharine / Sucralose/Alitame/Aspartame (any one)	1
24	(i) $CH_3CONH_2 + Br_2 + 4KOH \rightarrow CH_3NH_2 + K_2CO_3 + 2 KBr + 2 H_2O$	1
	(ii) $C_6H_5NH_2+NaNO_2 + 2HC1 \xrightarrow{273-278K} C_6H_5N_2^+C1^- + NaC1 + 2H_2O$	1
l		

	(iii) CO NH KOH Potassium phthalimide RX CO N-R Aqueous KOH Aqueous KOH COOK + RNH2 alkylamine potassium phthalate b.(i)Add CHCl3 and alc KOH, aniline gives foul smell of isocyanide whereas N- methyaniline does not. (ii)When (CH3)2NH reacts with Benzene SulphonylChloride(Hinsberg Reagent) gives ppt which is insoluble in alkali whereas (CH3)3N does not reacts with Hinsberg's Reagent.	1 1
	(Or any other correct test)	
	OR	
24	a. (i) (ii) OH OH	1,1,1
	b. (i) (CH ₃) ₃ N < C ₂ H ₅ NH2 < C ₂ H ₅ OH (ii) p-nitoaniline < aniline < p-methylaniline	1
25	 a. Rate of reaction is defined as change in concentration of reactants or products per unit time. Factors: concentration of reactant, temperature, pressure, surface area (any two) 	1 1/2, 1/2
	b. $log(k_2/k_1) = Ea/2.303R [1/T_1 - 1/T_2]$	1
	$log(8 \times 10^{-2}/4 \times 10^{-2}) = E_a/2.303 \times 8.314 [1/300 - 1/310]$	1
	log2 = Ea/2.303 x 8.314 [1/300 – 1/310] Ea = 53598.59 J/mol or 53.6 kJ/mol	1
	OR	
25	(a)(i) Rate becomes 4 times (ii) 2 nd order	1

		T
	b) $t_{1/2} = 0.693$	
	23.1 min = 0.693	
	k	1
	$k = 0.03 \text{min}^{-1}$	1,
	$k = 2.303 \log [A_0]$ t [A]	1/2
	t = <u>2.303 log 100</u> 0.03 25	1/2
	t = <u>2.303</u> x 0.6021 min 0.03	
	t = 46.22 min	1
26	(i) X-X' bond in inter halogens is weaker than X-X in halogens.	1
	(ii) High bond dissociation energy/ due to the presence of triple bond.	1
	(iii)Because bond dissociation enthalpy decreases from NH ₃ to BiH ₃ .	1
	b. (i) (ii)	
	HO OH OH OR	1,1
26		
20	a) PH ₃ P ₄ + 3NaOH + 3H ₂ O -> 3NaH ₂ PO ₂ +PH ₃ b)Helium c) Because bond dissociation energy of F-F bond is lower than that of Cl-Cl. d)4H ₃ PO ₃ - → 3H ₃ PO ₄ + PH ₃ e)PbS + 4O ₃ → PbSO ₄ + 4O ₂	1/2 , 1/2 1 1 1 1