
CHEMISTRY MARKING SCHEME Bhubaneswar – 2015 Set 3 - Code No. 56/3/B

Ques.	Value points	Marks
1.	1-Phenylpropan-2-ol	1
2.	HOCI , HOCIO, HOCIO ₂ , HOCIO ₃ (Any two)	1/2 +1/2
3.	$\begin{array}{c} (H, H, CH, G) \\ CH_3 - CH - CH_2 - CH_2 - Br \\ \\ CH_3 \end{array}$	1
4.	Negative charge	1
5.	XY ₃	1
6.	 (i) Potassium hexacyanidoferrate (III) (ii) [Co(NH₃)₅ NO₂]²⁺ 	1 1
7.	 (i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or P > π Reverse osmosis is used in desalination of hard water / sea water. 	1/2 ,1/2 1/2 , 1/2
8.	(i) $H_2 / Pd-BaSO_4$ (ii) NaOH/CaO, Δ OR	1 1
	OR	
8.	(i) $C_6H_5 \text{ CO } C_6H_5 < CH_3COCH_3 < CH_3CHO$ (ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1
9.	Formula: $w = z \times i \times t$ $time taken in \sec = \frac{w \times Valance \times 96500}{Mol Mass \times Current in Amp}$	Y ₂
	Substituting the values in the formula we get: $time \ taken \ in \ \sec = \frac{1.17 \ g \times 2 \times 96500 \ C \ mol^{-1}}{58.5 \ g \ mol^{-1} \times 5 \ amp}$ $time \ taken \ in \ \sec = \frac{225810}{292.5}$	1
	292.5 t=772 s (Or by any other correct method)	½
10.	(i) Due to comparable energies of 5f, 6d and 7s orbitals .	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1

11.	(i) Glyptal:	1
	COOH	
	Соон	
	Pthalic Acid and HO-CH ₂ - CH ₂ -OH (ethylene glycol)	
	(ii) Teflon:	1
	Monomer: 1,1,2,2-Tetrafluoroethene	
	$ \begin{array}{ccc} F & F \\ & \\ F - C = C - F \end{array} $	
	1,1,2,2-Tetrafluoroethene	
	(iii) Nylon-6	1
	Monomer: Caprolactum	
	H ₂ C N O	
	H_2C CH_2	
	C CH2	
	Caprolactum	
12.	 (Note : half mark for structure/s and half mark for name/s) (i) Because of higher oxidation state of Mn in Mn₂O_{7.} 	1
12.	 (ii) Due to almost similar atomic size / comparable size. 	1
	(iii) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
13.	(i) Maltose	1
15.		
	 Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose Thymine is present in DNA whereas in RNA Uracil is present (Any one) 	1
	(iii) Beri-Beri	1
14.	$E_{cell} = E_{cell}^{0} - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	1
	$2.6805 = E_{cell}^{0} - \underline{0.059}_{2} \text{ V} \log [\underline{0.0001}]_{10}$	
	2 [0.001]	1
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log 10^{-1} = E_{cell}^{0} - \frac{0.059}{2} V (-1)$	1
	$2.6805 = E_{cell}^{0} + 0.0295 V$	
	$E_{cell}^{0} = 2.6805 - 0.0295$	
	$E_{cell}^{0} = 2.6510 V$	

		1
15.	(i) Solution is homogeneous colloid is heterogeneous In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is $1 - 1000$ nm (10^{-9} to 10^{-6} m)(Any one point)	1
	(ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase.	1
	(iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water.	1
	(Any one point)	
16.	(i) $CH_3 - CH(OH) - CN$	1
	(ii) $C_6H_5 - COOH$	1
	(iii) $CH_3 - CH_2NH_2$	1
17.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$\frac{23.75mm - 23.375mm}{23.75mm} = \frac{5.0g \times 18g /mol}{M_2 \times 95.0g}$	
	-	
	$M_{2} = \frac{5.0 g \times 18.0 g / mol \times 23.75 mm}{95 g \times 0.375 mm}$	1
	$95 g \times 0.375 mm$ $M_2 = 60.0 g/mol$	1
18.	(i) Distillation	1
	(ii) Collector / enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive / ΔG is more negative	1
19.	(i) Due to the stability of benzyl carbocation/resonance/Diagram	1
	 (ii) Because 2-Bromobutane has a chiral centre. (iii) Due to - I effect of halogen. 	1 1
20.	(i) $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl}{0^\circ -5^\circ C} C_6H_5N_2Cl \xrightarrow{H_2O+H^+}{Or Hydrolysis} C_6H_5OH$	1
	(ii) $CH_3 - CH = CH_2 \xrightarrow{HBr}_{Organic peroxide} CH_3 - CH_2 - CH_2Br \xrightarrow{KOH_{Aq}} CH_3CH_2CH_2OH$	1
	(iii)	
	OCH ₃ OCH ₃	
	$\begin{array}{ } \hline \\ \hline $	
	Anisole 2-Methoxytoluene CH ₃	1
	(Or any correct method)	

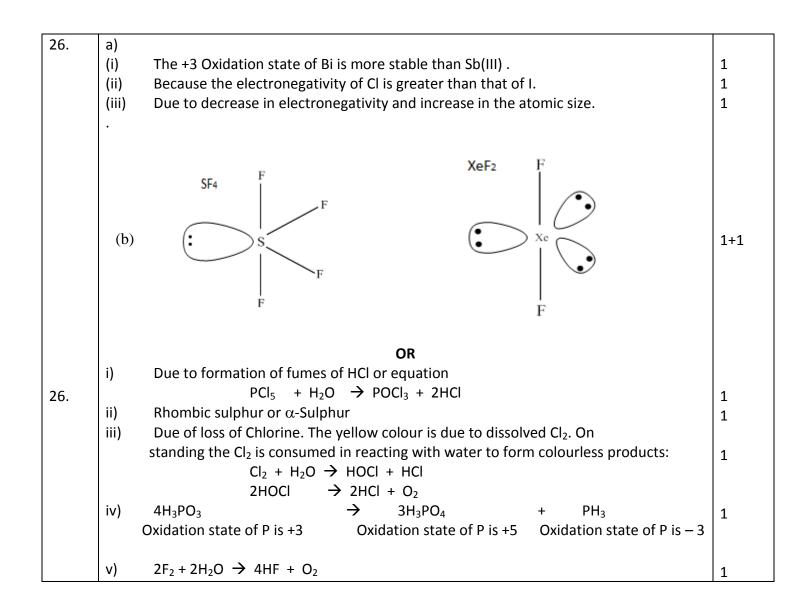
$$k_{1} = \frac{2.303}{20s} \log \frac{0.4M}{0.2M}$$

$$k_{2} = 0.03 s^{-1}$$

$$k_{2} = \frac{2.303}{40s} \log \frac{0.4M}{0.1M}$$

$$k_{2} = 0.03 s^{-1}$$
Since constant values of rate constants are obtained by applying 1st Order integrated rate law, the reaction is pseudo first order reaction.
(b) Av rate = $\frac{total \ change in \ concentration}{total \ change in time}$
or
$$Av \ rate = -\frac{[CH, COOCH,] final - [CH, COOCH,] initial}{Time(f) - Time(i)}$$

$$Av \ rate = -\frac{[CH, COOCH,] final - [CH, COOCH,] initial}{Time(f) - Time(i)}$$
25.
a) i) Collision frequency: No of collisions taking place per second per unit volume.
ii) Rate Constant: It is the rate of reaction when the concentration of reactants is unity i.e. 1 M. It is temperature dependent
b) $\log \frac{k_{2}}{k_{1}} = \frac{Eaa}{2.303k} \left[\frac{T_{2} - T_{1}}{T_{1}} \right]$


$$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$$

$$0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$$

$$0.7782 = \frac{Ea}{19.147} \left[0.00047619 \right]$$

$$0.7782 - \frac{Ea}{19.147} \left[0.00047619 \right]$$

$$0.7782 - \frac{Ea}{19.147} = Ea = 31.29 \ k/mol$$

