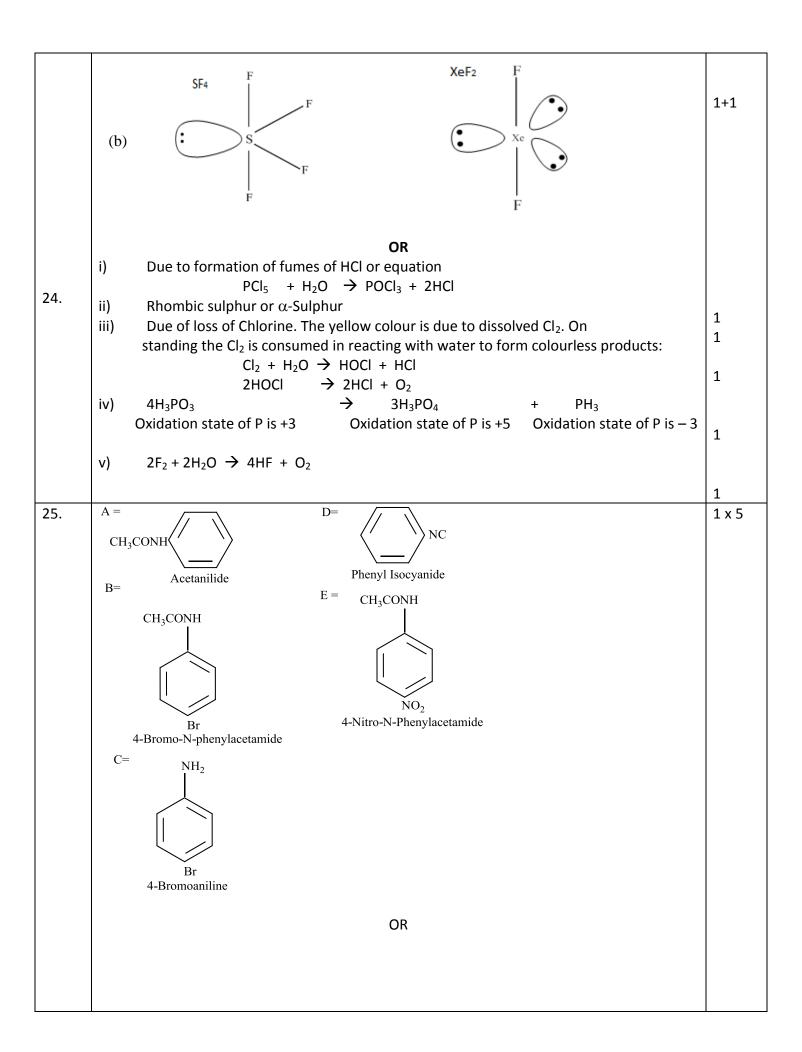
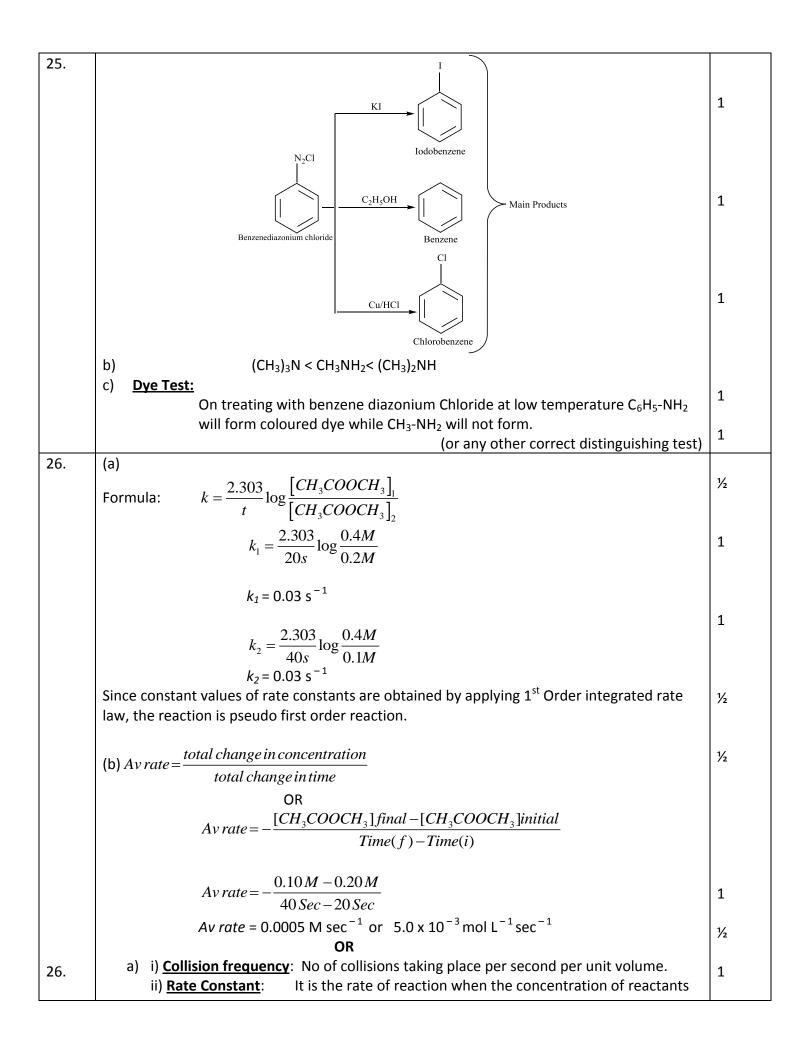
CHEMISTRY MARKING SCHEME

Bhubaneswar – 2015


Set 2 - Code No. 56/2/B


Ques.	Value points	Marks
1.	HOCI , HOCIO, HOCIO ₂ , HOCIO ₃ (Any two of these)	1/2 +1/2
2.	CH ₃ – CH – CH ₂ – CH ₂ – Br	1
3.	Negative charge	1
4.	XY ₃	1
5.	1-Phenylpropan-2-ol	1
6.	Formula: $w = z \times i \times t$ $time \ taken \ in \ sec = \frac{w \times Valance \times 96500}{Mol \ Mass \times Current \ in \ Amp}$	1/2
	Substituting the values in the formula we get: $time \ taken \ in \ sec = \frac{1.17 \ g \times 2 \times 96500 \ C \ mol^{-1}}{58.5 \ g \ mol^{-1} \times 5 \ amp}$ $time \ taken \ in \ sec = \frac{225810}{292.5}$	1
	t=772 s (Or by any other correct method)	1/2
7.	(i) Potassium hexacyanidoferrate (III)	1
	(ii) $[Co(NH_3)_5 NO_2]^{2+}$	1
8.	(i) Due to comparable energies of 5f, 6d and 7s orbitals.	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1
9.	(i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or $P > \pi$ Reverse osmosis is used in desalination of hard water / sea water.	1/2 ,1/2 1/2 , 1/2 , 1/2
10.	(i) H ₂ / Pd-BaSO ₄	1
	(ii) NaOH/CaO, Δ OR	1
10.	i) $C_6H_5 CO C_6H_5 < CH_3COCH_3 < CH_3CHO$ ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1

11.	(i) Distillation	1
	(ii) Collector/ enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive /ΔG is more negative	1
12.	(i) Stoichiometric Defect	1
	(ii) Frenkel Defect	1
	(iii) Due to small size of Ag ⁺ ion	1
13.	(i) CH ₃ – CH(OH) – CN	1
	(ii) $C_6H_5 - COOH$	1
	(iii) CH ₃ – CH ₂ NH ₂	1
14.	(ii) $t_{2g}^3 e_g^1$ (iii) Hybridization dsp^2 , Shape \rightarrow Square planar or diagram	1 ½ 1 ½
	(Marks of (i) part is merged into (ii) and (iii) part)	
15.	(i) Due to the stability of benzyl carbocation/resonance/Diagram	1
	(ii) Because 2-Bromobutane has a chiral centre.	1
	(iii) Due to – I effect of halogen.	1
16.	(i) $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl} C_6H_5N_2Cl \xrightarrow{H_2O + H^+} C_6H_5OH$	1
	(ii) $CH_3 - CH = CH_2 \xrightarrow{Organic peroxide} CH_3 - CH_2 - CH_2Br \xrightarrow{KOH_{Aq}} CH_3CH_2CH_2OH$	1
	(iii)	
	OCH ₃ CH ₃ Cl Anh.AlCl ₃ CH ₃ Cl CH ₃ CH Anh.AlCl ₃ CH ₃ CH CH ₃	1
	(Or any correct method	1)

16.	OR	
	(i) $CH_3 - CH_2 - CH_2OH \xrightarrow{Cu/573K} CH_3CHO + H_2$	1
	(ii) OH OH	
	CH ₃ COCl + +	1
	Phenol 2-Hydroxyacetophenone COCH ₃	
	4-Hydroxyacetophenone (iii) $C_2H_5CI + NaOCH_3 \rightarrow C_2H_5-O-CH_3 + NaCI$	1
17.	(i) Maltose	1
	(ii) • Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose	1
	 Thymine is present in DNA whereas in RNA Uracil is present (Any one) (iii) Beri-Beri 	1
18.	$E_{ceii} = E_{ceii}^{0} - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	1
	$\frac{\mathcal{L}_{cell} - \mathcal{L}_{cell}}{nF} \frac{-\log[B^{2+}]}{n}$	
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log [0.0001]$ [0.001]	1
	$2.6805 = E_{\text{cell}}^{0} - \underline{0.059}_{2} \text{ V log } 10^{-1} = E_{\text{cell}}^{0} - \underline{0.059}_{2} \text{ V} (-1)$	
	$2.6805 = E_{\text{cell}}^{0} + 0.0295 \text{ V}$	
	$E_{cell}^{0} = 2.6805 - 0.0295$	1
	$E_{cell}^{0} = 2.6510 \text{ V}$	
19.	(i) Glyptal:	1
	СООН	
	COOK	
	COOH Pthalic Acid	
	and HO-CH ₂ - CH ₂ -OH (ethylene glycol)	
	(ii) Teflon: Monomer: 1,1,2,2-Tetrafluoroethene	1
	$ \begin{array}{cccc} F & F \\ & \\ F & C & = & C & F \end{array} $	
	1 0 -	

	1,1,2,2-Tetrafluoroethene	
	(iii) Nylon-6	
	Monomer: Caprolactum	1
	H I	
	N	
	H_2C	
	H_2C CH_2	
	CH_2	
	Caprolactum	
	(Note: half mark for structure/s and half mark for name/s)	
20.	(i) Because of higher oxidation state of Mn in Mn ₂ O _{7.}	1
	(ii) Due to almost similar atomic size / comparable size.	1
	(iii) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
21.	(i) Solution is homogeneous colloid is heterogeneous	1
	In solution the size of particles (solute) is less than 1 nm whereas in colloids the range	
	of size of particles is $1 - 1000$ nm $(10^{-9}$ to 10^{-6} m)(Any one point)	
	(ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in	1
	heterogeneous catalysis they are in different phase.	
	(iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil	
	The O/W type emulsion can be diluted with water whereas the W/O emulsion can't	1
	be diluted with water. (Any one point)	
22.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$p_1^0 - M_2 \times w_1$	
	$23.75 mm - 23.375 mm 5.0 g \times 18 g / mol$	
	$\frac{23.75 mm - 23.375 mm}{23.75 mm} = \frac{5.0 g \times 18 g / mol}{M_2 \times 95.0 g}$	
	$M_2 = \frac{5.0 \text{g} \times 18.0 \text{g} / \text{mol} \times 23.75 \text{mm}}{0.5 \text{g} \times 0.375 \text{mm}}$	
	$M_2 = \frac{3.68 \times 16.68 \times 1000 \times 1000}{95 \text{g} \times 0.375 \text{mm}}$	1
		1
22	$M_2 = 60.0 \mathrm{g/mol}$	1 1/ 1/
23.	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (Any two)	
	(ii) Through posters, nukkad natak in community, social media, play in assembly or any other (Any two)	1
	(iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental	1
	disorders . Eg: equanil (or any other suitable example)	1/2 , 1/2
	(iv) Aspartame is unstable at cooking temperature.	1
	107 / Apartame is unstable at cooking temperature.	_
24.	a)	
	(i) The +3 Oxidation state of Bi is more stable than Sb(III).	1
	(ii) Because the electronegativity of Cl is greater than that of I.	1
	(iii) Due to decrease in electronegativity and increase in the atomic size.	1

is unity i.e. 1 M. It is temperature dependent	1
b) $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$ $0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	1
$0.7782 = \frac{Ea}{19.147} [0.00047619]$	
$\frac{0.7782 \times 19.147}{0.00047619} = Ea = 31290.44 \text{ J}$ Ea = 31.29 kJ/mol	1