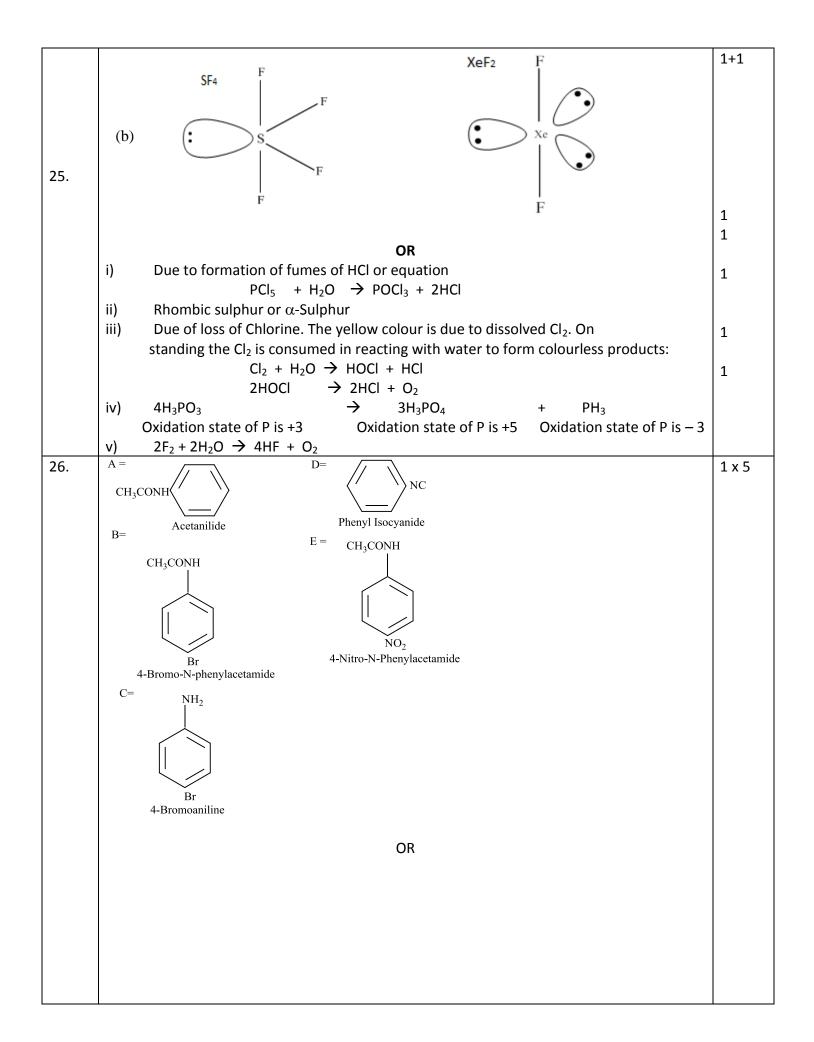

CHEMISTRY MARKING SCHEME Bhubaneswar – 2015 Set 1 - Code No. 56/1/B


Ques.	Value points	Marks
1.	Negative charge	1
2.	XY ₃	1
3.	HOCI , HOCIO, HOCIO ₂ , HOCIO ₃ (Any two)	1/2 +1/2
4.	1-Phenylpropan-2-ol	1
5.	$CH_3 - CH - CH_2 - CH_2 - Br$ $ $ CH_3	1
6.	(i) $H_2 / Pd-BaSO_4$ (ii) NaOH/CaO , Δ OR	1 1
6.	(i) $C_6H_5 CO C_6H_5 < CH_3COCH_3 < CH_3CHO$ (ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1 1
7.	(i) Due to comparable energies of 5f, 6d and 7s orbitals .	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1
8.	Formula: $w = z \times i \times t$ $time taken in \sec = \frac{w \times Valance \times 96500}{Mol Mass \times Current in Amp}$	Y ₂
	Substituting the values in the formula we get: $time \ taken \ in \ \sec = \frac{1.17 \ g \times 2 \times 96500 \ C \ mol^{-1}}{58.5 \ g \ mol^{-1} \times 5 \ amp}$ $time \ taken \ in \ \sec = \frac{225810}{292.5}$	1
	t=772 s (Or by any other correct method)	1/2
9.	(i) Potassium hexacyanidoferrate (III)	1
	(ii) $[Co(NH_3)_5 NO_2]^{2+}$	1
10.	 (i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or P > π 	1/2 ,1/2 1/2 ,

	Reverse osmosis is used in desalination of hard water / sea water.	1/2
	Reverse osmosis is used in desaination of hard water / sea water.	/2
11.	(i) Maltose	1
	 (ii) Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose Thymine is present in DNA whereas in RNA Uracil is present (Any one) 	1
	(iii) Beri-Beri	1
12.	$E_{cell} = E_{cell}^{0} - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	1
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log \left[\frac{0.0001}{0.001} \right]$	1
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log 10^{-1} = E_{cell}^{0} - \frac{0.059}{2} V (-1)$	
	$2.6805 = E_{cell}^{0} + 0.0295 V$ $E_{cell}^{0} = 2.6805 - 0.0295$	
	$E_{cell} = 2.0003 - 0.0293$	
	$E_{cell}^{0} = 2.6510 \text{ V}$	1
13.	(i) Solution is homogeneous colloid is heterogeneous	1
101	In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is $1 - 1000$ nm (10^{-9} to 10^{-6} m)(Any one point)	
	 (ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase. (iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil 	1
	The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water.	1
	(Any one point)	
14.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$\frac{23.75mm - 23.375mm}{23.75mm} = \frac{5.0g \times 18g /mol}{M_2 \times 95.0g}$	
	-	
	$M_{2} = \frac{5.0 g \times 18.0 g / mol \times 23.75 mm}{95 g \times 0.375 mm}$	1
	$M_2 = 60.0 \text{ g/mol}$	1
15.	(i) Distillation	1
	(ii) Collector / enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive / ΔG is more negative	1
16.	(i) Stoichiometric Defect	1
	(ii) Frenkel Defect	1
	(iii) Due to small size of Ag^+ ion	1

17.	(i) $CH_3 - CH(OH) - CN$	1
	(ii) $C_6H_5 - COOH$	1
	(iii) $CH_3 - CH_2NH_2$	1
18.	(i) Glyptal:	1
		-
	СООН	
	Соон	
	Pthalic Acid	
	and HO-CH ₂ - CH ₂ -OH (ethylene glycol)	
	(ii) Teflon: Monomer: 1,1,2,2-Tetrafluoroethene	1
	F F	
	F - C = C - F	
	1,1,2,2-Tetrafluoroethene	
	(iii) Nylon-6 Monomer: Caprolactum	1
	Н	
	H ₂ C N O	
	H ₂ C CH ₂	
	the chief	
	Caprolactum	
	(Note : half mark for structure/s and half mark for name/s)	
19.	(i) Because of higher oxidation state of Mn in Mn_2O_7 .	1
	(ii) Due to almost similar atomic size / comparable size.	1
	(iii) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
20.	(ii) $t_{2g}^{3} e_{g}^{1}$ (iii) Hybridization dsp^{2} , Shape \rightarrow Square planar or diagram	1 ½ 1 ½
		1 /2
	NC N	
	Ni	
	(Marks of (i) part is merged into (ii) and (iii) part)	
L		

r		· · · · · · ·
	$k_2 = 0.03 \text{ s}^{-1}$	1
	Since constant values of rate constants are obtained by applying 1 st Order integrated rate law, the reaction is pseudo first order reaction.	1∕2
	(b) $Av rate = \frac{total change in concentration}{total change in time}$ or	1/2
	$Av rate = -\frac{[CH_3COOCH_3]final - [CH_3COOCH_3]initial}{Time(f) - Time(i)}$	
	$Av rate = -\frac{0.10 M - 0.20 M}{40 Sec - 20 Sec}$	1
	$40 \text{sec} - 20 \text{sec}^{-1}$ Av rate = 0.0005 M sec ⁻¹ or 5.0 x 10 ⁻³ mol L ⁻¹ sec ⁻¹	1/2
	OR	
24	 a) i) <u>Collision frequency</u>: No of collisions taking place per second per unit volume. ii) <u>Rate Constant</u>: It is the rate of reaction when the concentration of reactants 	1
	is unity i.e. 1 M. It is temperature dependent b) $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
	$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	1
	$0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$ $0.7782 = \frac{Ea}{19.147} [0.00047619]$	
	$\frac{0.7782 \times 19.147}{0.00047619} = Ea = 31290.44 \text{ J/mol}$	1
25	Ea = 31.29 kJ/mol	
25.	 a) (i) The +3 Oxidation state of Bi is more stable than Sb(III). (ii) Because the electronegativity of Cl is greater than that of I. (iii) Due to decrease in electronegativity and increase in the atomic size. 	1 1 1

