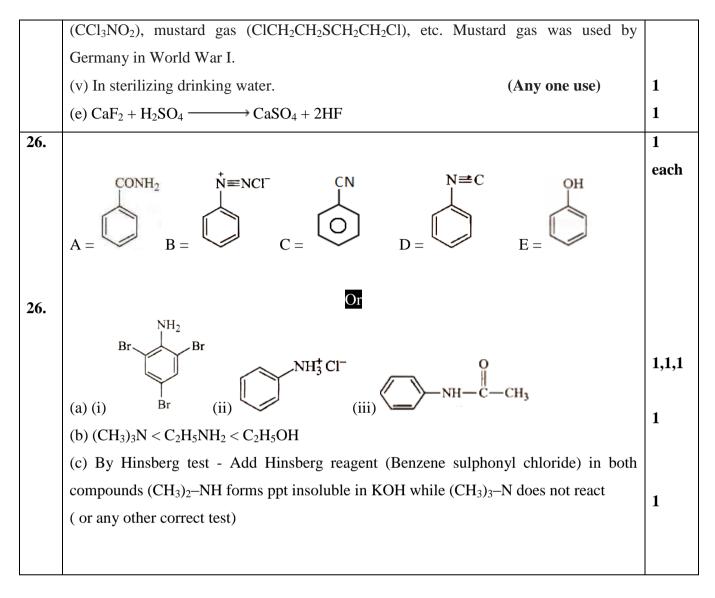
CHEMISTRY MARKING SCHEME

<u>AJMER – 2015</u>

<u>SET - 56/2/A</u>


Que stion	Value points	Marks
01.	H_3PO_2 , H_3PO_3 , $H_4P_2O_5$, $H_4P_2O_6$, H_3PO_4 , $H_4P_2O_7$, H_3PO_5 , $H_4P_2O_8$, $(HPO_3)_3$	1/2,1/2
	$(HPO_3)_n \qquad (Any two)$	
02.	C ₆ H ₅ -CH ₂ CH ₂ -Br	1
03.	AlCl ₃ , due to greater charge on Al ^{$3+$} .	1
04.	X ₂ Y ₃	1
05.	2,2–Dimethylpropan–1–ol	1
06.	Due to comparable energies of ns & $(n-1)d$ orbitals / due to presence of unpaired	1
	electrons in (n–1)d orbitals.	
	In transition elements, oxidation states differ from each other by unity whereas in case	
	of p- block elements, the oxidation states differ by units of two	
	Or In transition elements, the higher oxidation states are more stable for heavier	
	elements in a group. In p – block elements, the lower oxidation states are more stable	
	for heavier members due to inert pair effect. (Any one difference)*	1
07.	(i) Ammineaquadichloridoplatinum(II)	1
	(ii) $[Cr(en)_3]Cl_3$	1
08.	Wt. of $Ag = 1.5g$ Current = i = 1.5amp	
	Molecular mass = 108 g/mol $F = 96500$ C/mol	
	n = number of electron transferred	
	$W = \frac{M \times I \times t}{n \times F}$	1/2
	$\therefore t = \frac{W \times n \times F}{M \times I} = \frac{1.5 \times 1 \times 96500}{108 \times 1.5}$	1
	= 893.51 s or 14.89 min	1⁄2
	Or	
	At cathode: $Ag^+ + e^- \longrightarrow Ag_{(s)}$	
	108g of Ag require 1F	
	: 1.5g of Ag require $\frac{1.5}{108}$ F = $\frac{1.5 \times 96500}{108}$ = 1340.27 C	
	$t = \frac{Q}{i} = \frac{1340.27}{15}$	1⁄2
	$i = \frac{1}{1.5}$	1
	=893.51s or 14.89 min	1⁄2
09.	(i) Zn-Hg/HCl or H_2N-NH_2 & KOH/Glycol, Δ	1

	(ii) PCl ₅ / PCl ₃ / SOCl ₂ (Any One)	1
	Or	
09.	(i) $C_6H_5CHO < CH_3CHO < HCHO$	1
	(ii) 4 – Methoxybenzoic acid < 4 – Nitrobenzoic acid < 2,4 – Dinitrobenzoic acid	1
10.	(i) As solubility of gases decreases with increase of temperature, less oxygen is	1
	available in summer in the lakes / as cold water contains more oxygen dissolved.	
	(ii) They will shrink, due to osmosis.	1
11.	(i) Van Arkel Method / vapour phase refining	1
	(ii)Zn acts as a reducing agent	1
	(iii) As ΔS is positive / ΔG is more negative	1
12.	(i) The large positive E^0 value for Mn^{3+} / Mn^{2+} shows that Mn^{2+} (3d ⁵ / half filled d	
	orbital) is much more stable than Mn^{3+} Whereas Cr^{3+} (t $_{2g}^{3}$) is more stable than Cr^{2+}	1
	(ii) Due to $d - d$ transition / due to presence of unpaired electrons in d – orbitals which	
	absorb light in visible region	1
	(iii) $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	1
13.	(i) Linkage isomerism	1
	(ii) $t_2g^3 eg^1$ / Diagrammatic representation	1
	(iii) d ² sp ³ , Octahedral	1/2, 1/2
14.	(i) $CH_3 - C = N - NH - CO - NH_2$	1
	ĊH ₃	
	(ii) C ₆ H ₅ –COOH	1
		1
1.	NO ₂	
15.		1
	$\begin{array}{ccc} HO - C - (CH_2)_4 - C - OH & H_2N - (CH_2)_6 - NH_2 \\ (i) & Adipic acid & and & Hexamethylenediamine \end{array}$	1
	OH	
	Н	
	H > C = O	
	(ii) Formaldehyde and Phenol	1
	CH=CH ₂	1
		1
	(iii) Styrene	1
	(Note: half mark for structure/s and half mark for name/s in each case)	
16.	(i) Maltose	1

	(ii) In acidic amino acid more carboxyl groups as compared to amino groups are present	
	& In basic amino acid more number of amino than carboxyl groups are present	1
	(iii) Phosphodiester linkage	1
17.	$P_{A}^{o} = 17.5$ mm of Hg $W_{B} = 15$ g $M_{B} = 180$ g/mol	
	$W_A = 150g$ $Ps = ?$	
	$\frac{p_A^o - p_S}{p_A^o} = \frac{W_B \times M_A}{M_B \times W_A} \therefore \ \frac{p_A^o - p_S}{p_A^o} = \frac{15 \times 18}{180 \times 150} = 0.01$	1
	$\frac{\mathbf{p}_{A}^{o} - \mathbf{p}_{S}}{\mathbf{p}_{A}^{o}} = \frac{17.5 - \mathbf{p}_{S}}{17.5} = 0.01 \therefore$	1
	$p_{s} = 17.325 \text{ mm of Hg}$	1
18.	(i) Non – Stoichiometric defect	1
	(ii) F – Centre or Farbe Centre	1
	(iii) NaCl is heated in an atmosphere of Na vapour / LiCl is heated in an atmosphere of	1
	Li vapour / KCl is heated in an atmosphere of K vapour	
19.	(i) CH ₃ -CH=CH ₂ $\xrightarrow{H_2 O / H^+}$ CH ₃ -CH(OH)-CH ₃	1
	$ \begin{array}{c} Br \\ \bigcirc \\ \bigcirc \\ \hline \\ \bigcirc \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	1
	(iii) $CH_3-CH_2-CH-CH_3 \xrightarrow{KOH (Alc)} CH_3-CH=CH-CH_3$	1
	(or any other correct method)	
	Or	
19.	(i) $C_2H_5Cl + NaI \xrightarrow{Acetone} C_2H_5I + NaCl$	
		1
	$\langle O \rangle$ -CI + 2Na + CI - $\langle O \rangle$ - Δ - $\langle O \rangle$ - $\langle O \rangle$ + 2Na CI	
	(ii) \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $+2NaCl$	1
	(iii) $CH_3Cl + KNO_2 \xrightarrow{\Delta} CH_3 - ONO + KCl$	1
20.	(i) Due to $-I / -R$ effect of $-NO_2$ group & $+I / +R$ effect of $-CH_3$ group or	
	4-nitrophenoxide ion is more stable than 4-methylphenoxide ion	1
	(ii) Due to +R effect of – OH group in phenol / due to sp^2 hybridization of C-atom in	
	C-OH group in phenol whereas sp ³ hybridization of C-atom in C-OH group in	
	methanol.	1
	(iii) (CH ₃) ₃ C–Br being a 3° halide prefers to undergo β – elimination on reacting with	
	strong base like NaOCH ₃ .	1
21.	$A^{2+} + B^+ \longrightarrow A^{3+} + B \qquad (n = 1)$	
	Kc = 10^{10} F = 96500C/mol T = 25° C = 298K	

	$\Delta G^{o} = ?$ $E^{o} = ?$ $R = 8.314 J/K/mol$	
	$\Delta G^{o} = -2.303 RT \log Kc$	1/2
	$\Delta G^{\circ} = -2.303 \text{ x } 8.314 \text{ J/K/mol x } 298 \text{K x } \log 10^{10}.$	
	$\therefore \Delta G^{\circ} = -57058.4 \text{ J/mol} \text{ or } -57.0584 \text{ kJ/mol}$	1
	$\Delta G^{o} = -57058.4 \text{ J/mol} = -nFE^{o} = -1 \text{ x } 96500 \text{ x } E^{o}$	1⁄2
	$\therefore E^{o} = \frac{-57058.4}{-96500} = 0.591V \text{(or any other correct method)}$	1
22.	The accumulation of molecular species at the surface rather than in the bulk of a solid or	
	liquid is termed adsorption.	1/2
	eg: gas like O_2 , H_2 , CO , Cl_2 , NH_3 or SO_2 is taken in a closed vessel containing	1⁄2
	powdered charcoal	
	Due to bond formation / interaction between adsorbent and adsorbate	1
	Physical (van der Waal's adsorption) & Chemical (Langmuir adsorption)	1
23.	(i) Caring nature / Generous / Sensible human approach / empathy/ concern (any two)	1/2,1/2
	(ii) By making posters & displaying them in school premises / by doing role play	1
	(or any other correct answer)	
	(iii) Drugs which are used for the treatment of /counteract depression. eg: Rauwolfia	
	serpentina / Barbituric acid / Equanil / Valium (Diazeparn) / Chlordiazepoxide /	1/2, 1/2
	meprobamate / iproniazid / phenelzine (any one example)	
	(iv) Saccharin / Aspartame / Alitame / Sucrolose / Cyclamate / L-Glucose (any one)	1
24.	(i) $Ao = 0.60$ $A = 0.30$ when $t = 30s$	
(a)	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1
	$k = \frac{2.303}{30} \log \frac{0.60}{0.30}$	
	$k = \frac{2.303}{30} \log 2 = \frac{2.303}{30} \times 0.3010$	1/2
	$k = \frac{0.693}{30} = 0.0231 s^{-1}$	
	When $Ao = 0.60$ $A = 0.15$ when $t = 60s$	
	$k = \frac{2.303}{t} \log \frac{0.60}{0.15}$	
	$k = \frac{2.303}{60} \log \frac{0.60}{0.15}$	1/2
	$k = \frac{2.303}{60} \log 4 = \frac{2.303}{60} \times 0.6021$	
	$k = \frac{1.3866}{60} = 0.0231 s^{-1}$	1
	As for both cases k is approximately same reaction is of pseudo first order	1/
	(ii) Average rate during the interval 30 - 60 sec = $-\frac{\text{Change in concentration}}{\text{Change in time}}$	1/2
		1/2

	0.15 0.20	
	$=-\frac{0.15-0.30}{60-30}$	
	$=-\frac{-0.15}{30}=0.005 \text{ mol } L^{-1} \text{ S}^{-1}.$	1
	Or	
	(a) (i) rate increases by 4 times	1
24.	(ii) 2 nd order	1
	(b) Reaction is 50% completed in 23.1 min i.e. Half-life is 23.1 min	1/
	$\therefore \mathbf{k} = \frac{0.693}{t_{1/2}}$	1/2
	$=\frac{0.693}{23.1}=0.03\ \mathrm{min}^{-1}$	17
	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	$\frac{1/2}{1/2}$
	$0.03 \text{ min}^{-1} = \frac{2.303}{t} \log \frac{100}{25}$	1/2
	$0.03 = \frac{2.303}{t} \log 4$	
	$t = \frac{2.303}{0.03} \ge 0.6021 = \frac{1.3866}{0.03} = 0.0021 = \frac{1.3866}{0.03}$	1
	= 46.221 min	1
25.	(a) (i) Due to lone pair of electron on nitrogen in NH ₃	1
	(ii) Due to inert pair effect / Stability of higher oxidation state decreases down the group	1
	from S to Te / Stability of lower oxidation state increases down the group	
	(iii) ClO_4^- is more stable than ClO^-/ClO_4^- is weak conjugate base than ClO^-	1
	$(b) (i) \qquad \bigcirc \qquad $	1,1
	Or	
25.	(a) PH_3 $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$	1/2, 1/2
	(b) $Xe^{+}[PtF_{6}]^{-}$, Approximately same molecular size of Xe & O ₂ / Comparable	1/2, 1/2
	ionisation energies of Xe & O ₂	
	(c) It is due to (i) low enthalpy of dissociation of F-F bond (ii) high hydration enthalpy	1/2, 1/2
	of F ⁻ .	
	(d) (i) for bleaching wood pulp (required for manufacture of paper and rayon), cotton	
	and textiles.	
	(ii) In the metallurgy (extraction) of gold and platinum.	
	(iii) In the manufacture of dyes, drugs and organic compounds such as $CHCl_3$, CCl_4 , DDT refrigerents (CCl E freen) and blacebing powder	
	DDT, refrigerants (CCl_2F_2 , freon), and bleaching powder.	
	(iv) In the preparation of poisonous gases such as phosgene (COCl ₂), tear gas	

