CHEMISTRY MARKING SCHEME

<u>AJMER – 2015</u>

SET - 56/1/A

Que stion	Value points	Marks
01.	AlCl ₃ , due to greater charge on Al ³⁺ .	1
02.	X_2Y_3	1
03.	$H_{3}PO_{2}\;,H_{3}PO_{3}\;,H_{4}P_{2}O_{5}\;,H_{4}P_{2}O_{6}\;,H_{3}PO_{4}\;,H_{4}P_{2}O_{7}\;,H_{3}PO_{5}\;,H_{4}P_{2}O_{8}\;,(HPO_{3})_{3}$	1/2, 1/2
	$(HPO_3)_n$ (Any two)	
04.	2,2–Dimethylpropan–1–ol	1
05.	C ₆ H ₅ -CH ₂ CH ₂ -Br	1
06.	(i) As solubility of gases decreases with increase of temperature, less oxygen is	1
	available in summer in the lakes / as cold water contains more oxygen dissolved.	
	(ii) They will shrink, due to osmosis.	1
07.	Wt. of $Ag = 1.5g$	
	Molecular mass = 108 g/mol F = 96500 C/mol	
	n = number of electron transferred	
	$W = \frac{M \times I \times t}{-}$	1/2
	n x F	1
	$\therefore t = \frac{W \times n \times F}{M \times I} = \frac{1.5 \times 1 \times 96500}{108 \times 1.5}$	1/2
	= 893.51 s or 14.89 min	
	Or	
7	At cathode: $Ag^+ + e^- \longrightarrow Ag_{(s)}$	1/2
	108g of Ag require 1F	
	:. 1.5g of Ag require $\frac{1.5}{108}$ F = $\frac{1.5 \times 96500}{108}$ = 1340.27 C	1
	$t = \frac{Q}{i} = \frac{1340.27}{1.5}$	
	=893.51s or 14.89 min	1/2
08.	Due to comparable energies of ns & (n-1)d orbitals / due to presence of unpaired	1
	electrons in (n–1)d orbitals.	
	In transition elements, oxidation states differ from each other by unity whereas in case	
	of p- block elements, the oxidation states differ by units of two / In transition elements,	
	the higher oxidation states are more stable for heavier elements in a group. In p – block	
	elements, the lower oxidation states are more stable for heavier members due to inert	

	pair effect. (Any one difference)	1
09.	(i) Ammineaquadichloridoplatinum(II)	1
	(ii) $[Cr(en)_3]Cl_3$	1
10.	(i) Zn-Hg, HCl or H_2N-NH_2 & KOH/Glycol , Δ	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂ (Any one)	1
	Or	
10.	(i) $C_6H_5CHO < CH_3CHO < HCHO$	1
	(ii) 4 – Methoxybenzoic acid < 4 – Nitrobenzoic acid < 2,4 – Dinitrobenzoic acid	1
11.	$P_{A}^{o} = 17.5 \text{mm of Hg}$ $W_{B} = 15 \text{g}$ $M_{B} = 180 \text{ g/mol}$	
	$W_A = 150g Ps = ?$	
	$\frac{p_A^0 - p_S}{p_A^0} = \frac{W_B \times M_A}{M_B \times W_A} \therefore \frac{p_A^0 - p_S}{p_A^0} = \frac{15 \times 18}{180 \times 150} = 0.01$	1
	$\frac{\mathbf{p_A^0 - p_S}}{\mathbf{p_A^0}} = \frac{17.5 - \mathbf{p_S}}{17.5} = 0.01$	1
	$\therefore p_s = 17.325 \text{ mm of Hg}$	1
12.	(i) Non – Stoichiometric defect	1
	(ii) F – Centre / Farbe Centre	1
	(iii) NaCl is heated in an atmosphere of Na vapour / LiCl is heated in an atmosphere of	1
	Li vapour / KCl is heated in an atmosphere of K vapour.	
13.	$A^{2+} + B^{+} \longrightarrow A^{3+} + B $ $(n = 1)$	
	$Kc = 10^{10}$ $F = 96500C/mol$ $T = 25^{\circ}C = 298K$	
	$\Delta G^{o} = ?$ $R = 8.314 \text{J/K/mol}$	
	$\Delta G^{o} = -2.303RT \log Kc$	1/2
	$\Delta G^{o} = -2.303 \times 8.314 \text{ J/K/mol} \times 298 \text{K} \times \log 10^{10}.$	
	$\therefore \Delta G^{o} = -57058.4 \text{ J/mol or } -57.0584 \text{ kJ/mol}$	1
	$\Delta G^{o} = -57058.4 \text{ J/mol} = -\text{nFE}^{o} = -1 \text{ x } 96500 \text{ x E}^{o}$	1/2
	$\therefore E^{o} = \frac{-57058.4}{-96500} = 0.591V \text{(or any other correct method)}$	1
14.	The accumulation of molecular species at the surface rather than in the bulk of a solid or	
	liquid is termed adsorption.	1/2
	eg: gas like O ₂ , H ₂ , CO, Cl ₂ , NH ₃ or SO ₂ is taken in a closed vessel containing	1/2
	powdered charcoal	
	Due to bond formation / interaction between adsorbent and adsorbate	1
	Physical (van der Waal's adsorption) & Chemical (Langmuir adsorption)	1
15.	(i) Van Arkel Method / vapour phase refining	1
	(ii)Zn acts as a reducing agent	1

	(iii) As ΔS is positive $/\Delta G$ is more negative	1
16.	(i) The large positive E^0 value for Mn^{3+} / Mn^{2+} shows that Mn^{2+} (3d ⁵ / half filled d	
	orbital) is much more stable than Mn^{3+} Whereas Cr^{3+} (t $_{\mathrm{2g}}^{3}$) is more stable than Cr^{2+}	1
	(ii) Due to d – d transition / due to presence of unpaired electrons in d – orbitals which	
	absorb light in visible region	1
	(iii) $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	1
17.	(i) Linkage isomerism	1
	(ii) t ₂ g ³ eg ¹ / Diagrammatic representation	1
	(iii) d ² sp ³ , Octahedral	1/2, 1/2
18.	(i) CH_3 – $CH=CH_2$ $\xrightarrow{H_2 \circ / H^+}$ CH_3 – $CH(OH)$ – CH_3	1
	$(ii) \xrightarrow{Br} \xrightarrow{CH_3COCI / Anhy AlCl_3} \xrightarrow{Br} \overset{O}{\underset{C-CH_3}{\parallel}}$	1
	(iii) $CH_3-CH_2-CH-CH_3$ KOH (Alc) $CH_3-CH=CH-CH_3$	1
	(or any other correct method)	
	Or	
18.	(i) $C_2H_5Cl + NaI \xrightarrow{\textbf{Acetone}} C_2H_5I + NaCl$	
	(ii) \bigcirc CI + 2Na + CI \bigcirc \bigcirc Dry ether \bigcirc \bigcirc \bigcirc + 2NaCl	1
	(iii) $CH_3Cl + KNO_2 \xrightarrow{\Delta} CH_3 - ONO + KCl$	1
19.	(i) Due to -I / -R effect of -NO ₂ group & +I / +R effect of -CH ₃ group or	
	4-nitrophenoxide ion is more stable than 4-methylphenoxide ion	1
	(ii) Due to +R effect of – OH group in phenol / due to sp ² hybridization of C–atom in	
	C-OH group in phenol whereas sp ³ hybridization of C-atom in C-OH group in	
	methanol.	1
	(iii) $(CH_3)_3C$ -Br being a 3° halide prefers to undergo β – elimination on reacting with	
	strong base like NaOCH ₃ .	1
20.	(i) CH ₃ -C=N-NH-CO-NH ₂	1
	CH₃	
	(ii) C ₆ H ₅ -COOH	1
	(iii) O COOH	
	NO ₂	1

21.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	(i) Adipic acid and Hexamethylenediamine OH (ii) Formaldehyde and Phenol CH=CH ₂ (iii) Styrene	1
	(Note: half mark for structure/s and half mark for name/s in each case)	1
22.	(i) Maltose	1
	(ii) In acidic amino acid more carboxyl groups as compared to amino groups are present	
	& In basic amino acid more number of amino than carboxyl groups are present	1
22	(iii) Phosphodiester linkage	1
23.	(i) Caring nature / Generous / Sensible human approach / empathy/ concern (any two)(ii) By making posters & displaying them in school premises / by doing role play (or	$\begin{bmatrix} \frac{1}{2}, \frac{1}{2} \\ 1 \end{bmatrix}$
	any other correct answer)	1
	(iii) Drugs which are used for the treatment of /counteract depression. eg: Rauwolfia	
	serpentina / Barbituric acid / Equanil / Valium (Diazeparn) / Chlordiazepoxide /	1/2, 1/2
	meprobamate / iproniazid / phenelzine (any one example)	ŕ
	(iv) Saccharin / Aspartame / Alitame / Sucrolose / Cyclamate / L-Glucose (any one)	1
24.	CONH ₂ N≡NCI CN N≡C OH	1
	$A = \bigcup_{B = 0}^{\infty} C = \bigcup_{D = 0}^{\infty} D = \bigcup_{E = 0}^{\infty} E = \bigcup_{D = 0}^{\infty} C = \bigcup_{E = 0}^{\infty} C = \bigcup_{D =$	each
24.	$(a) (i) \qquad Br \qquad (ii) \qquad NH_3^{\dagger} Cl^{-} \qquad NH_2 - C - CH_3$ $(b) (CH_3)_3N < C_2H_5NH_2 < C_2H_5OH$ $(c) By Hinsberg test - Add Hinsberg reagent (Benzene sulphonyl chloride) in both$	1,1,1
	compounds (CH ₃) ₂ -NH forms ppt insoluble in KOH while (CH ₃) ₃ -N does not react	

	(or any other correct test)	
		1
25.	(i) $Ao = 0.60$ $A = 0.30$ when $t = 30s$	
(a)	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1
	5 6-9	
	$k = \frac{2.303}{30} \log \frac{0.60}{0.30}$	
	$k = \frac{2.303}{30} \log 2 = \frac{2.303}{30} \times 0.3010$	1/2
	$k = \frac{0.693}{30} = 0.0231s^{-1}$	
	When $Ao = 0.60$ $A = 0.15$ when $t = 60s$	
	$k = \frac{2.303}{t} \log \frac{0.60}{0.15}$	
	$k = \frac{2.303}{60} \log \frac{0.60}{0.15}$	1/2
	$k = \frac{2.303}{60} \log 4 = \frac{2.303}{60} \times 0.6021$	
	$k = \frac{1.3866}{60} = 0.0231s^{-1}$	
	As for both cases k is approximately same reaction is of pseudo first order	
	(ii) Average rate during the interval 30 - 60 sec = $-\frac{\text{Change in concentration}}{\text{Change in time}}$	1
	_	1/2
	$= -\frac{0.15 - 0.30}{60 - 30}$	1/2
	$=-\frac{-0.15}{30}=0.005 \text{ mol } L^{-1} \text{ S}^{-1}.$	1
		1
	Or	
25.	(a) (i) Rate increases by 4 times	1
	(ii) 2 nd order	1
	(b) Reaction is 50% completed in 23.1 min i.e. Half-life is 23.1 min	
	$\therefore k = \frac{0.693}{t_{1/2}}$	1/2
	$= \frac{0.693}{23.1} = 0.03 \text{ min}^{-1}$	1/2
	25.1	
	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1/2
	$0.03 \mathrm{min^{-1}} = \frac{2.303}{t} \log \frac{100}{25}$	1/2
	$0.03 = \frac{2.303}{t} \log 4$	
	$t = \frac{2.303}{0.03} \times 0.6021 = \frac{1.3866}{0.03}$:	
	= 46.221 min	

		1
26.	(a) (i) Due to lone pair of electron on nitrogen in NH ₃	1
	(ii) Due to inert pair effect / Stability of higher oxidation state decreases down the group	1
	from S to Te / Stability of lower oxidation state increases down the group	
	(iii) ClO ₄ ⁻ is more stable than ClO ⁻ /ClO ₄ ⁻ is weak conjugate base than ClO ⁻	1
(b)	(i) (ii) F F F Ne	1,1
26.	(a) PH_3 $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$	1/2, 1/2
	(b) $Xe^+[PtF_6]^-$, Approximately same molecular size of $Xe \& O_2$ / Comparable	1/2, 1/2
	ionisation energies of Xe & O ₂	
	(c) It is due to (i) low enthalpy of dissociation of F-F bond (ii) high hydration enthalpy of F ⁻ .	1/2, 1/2
	(d) (i) for bleaching wood pulp (required for manufacture of paper and rayon), cotton	
	and textiles.	
	(ii) In the metallurgy (extraction) of gold and platinum.	
	(iii) In the manufacture of dyes, drugs and organic compounds such as CHCl ₃ , CCl ₄ ,	
	DDT, refrigerants (CCl ₂ F ₂ , freon), and bleaching powder.	
	(iv) In the preparation of poisonous gases such as phosgene (COCl ₂), tear gas	
	(CCl ₃ NO ₂), mustard gas (ClCH ₂ CH ₂ SCH ₂ CH ₂ Cl), etc. Mustard gas was used by	
	Germany in World War I.	1
	(v) In sterilizing drinking water. (Any one use)	
	(e) $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$	1