CHEMSTRY MARKING SCHEME SET - 56/3(AN)

Q no.	Ans wers	Marks
1	It is first order of reaction	1
2	Al Q ₃	1
3	Xe OF ₄	
		1
4	6 Na OH + 3	1
5	$[Gt(en)_2] [Go(CN_{\epsilon}]]$	1
5		-
6	Heat both the compounds with I_2 and Na OH	1
	Propan-2-ol gives yellow wpt. of Iodofor m(or any other test)	
7	4-oxopent anal	1
8	It increases the pulse rate and blood pressure.	1
9	$d = \frac{z \times M}{z^3 - z}$	1/
	a x N _A	1/2
	For fcclattice $z = A$	
	$a=distance x \sqrt{2} = 287 \text{ pm x } 1.414$	
	=406 pm	
		1/2
	$d = 4x \ 108 \ g \ mol^{-1}$	
	$(4.06 \text{ x } 10^8 \text{ cm})^3 \text{ x } 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$	
	1 - 10 - 72 = -3	1
	$d = 10.72 \text{ g cm}^3$	1
10	(i) Ambidient Nucleonbile: Nucleonbiles with two nucleonbilic centres are called	
10	a not dient nucleophile	1/2+1/2
	ex. CN . NO^{-} (any one example)	, 21 , 2
	(ii) Finkel stein reaction:	
	$CH_3 - CH_2 - CI + NaI \qquad CH_3 CH_2 I + Na CI$	1
11	(a) Because of resonance in CH ₃ CONH ₂ , Nacquires +ve charge whereas due to +I effect	
	electron density on Nincreases in CH ₂ CH ₂ NH ₂	
	(b) Because of strong activation effect or $+R$ effect of NH_2 group in aromatic amines.	1+1
10	(or can be explained by diagrammatic representation)	
12	(a) Add an KOH followed by 2.4 DND to both the compounds 1.1 dish greathers gives	
	(a) And a quint of the origination of the second of the se	1
	you ow ppr.	1
	(or any other correct test)	

AN-3 2013

1/2x3=
1 1/2
written)
1/2
1/2 + 1/2
tion. $\frac{1}{2} + \frac{1}{2}$
IS
o si gnal s.
y to $1+1$

AN-3	2013
11110	2015

16	The activated complex has a transient existence and breaks up at a definite rate to for mthe product.	
	The energy required to for mactivated complex is called activation energy.	1+1
	OR	
	The rate of reaction is defined as the change in concentration of reactants or products per unit time, or mathematical expression	1
	If the rate is measured in larger time interval (Δt) then it is called average rate whereas if the rate is measured in very small time interval (Δt) then it is called instant analysis rate.	16-16
	Tate is measured in very small time interval $(\Delta \rightarrow 0)$ then it is called instant aneous rate.	72+72
17		
	$\log \frac{[R]_1}{[R]_2} = \frac{k(t_2 - t_1)}{2.302}$	
	2.303 = 2.303	1⁄2
	$\kappa = \overline{(t_2 - t_1)} \log \frac{1}{[R]_2}$	
	$= \frac{2.303}{(60 \text{ min} - 0 \text{ min})} \log \frac{1.24 \times 10^{-2} \text{ mol } \text{L}^{-1}}{0.20 \times 10^{-2} \text{ mol } \text{L}^{-1}}$	1
	$(301 \text{ mm}) = 0.20 \times 10^{-1101} \text{ mol}$	1
	= 1000000000000000000000000000000000000	
	$k = 0.0304 \text{ min}^{-1}$	1/2
18	(i) Because the ions present in saline water enhance the electroche mical process of rusting	
	(ii) Because the number of ions per unit volume decreases with dilution	1+1
19	(i) Homogeneous Catalysis: The catalytic process in which the reactants and catalyst are in	1
	the same phase is known as Homogeneous catalysis.	
	(ii) Enzy me Catalysis: The process of catalysis in which enzy mes are used to increase the rate of biochemical reactions.	1
	(iii) Associated Collaids: Some of the substance behave as destrict tes at low	1
	concentration but behave as colloid at higher concentration	
20	 (i) Because of discrete tetrahedral structure of white phosphorus. (ii) Because of interelectronic repulsion in F₂ due to its shorter bond length 	
	(iii) Because B is more stable in trivalent state.	1x3=3

21	<u>Ho mopol y mers</u>	<u>Copol y mers</u>	
	Polymers whose repeating structural units are derived from only one type of monomers units.	Polymers whose repeating structural units are derived from two or more types of monomer mol ecules.	
	ex. Pol yt hene, PVC et c	ex. Nylon 6, 6, Buna-Setc (or any other example)	1+1
	(b) PVC (Pol yvi nyl Chl ori de)		1
22	Ag ⁺ + e [−] → Ag 108 g is deposited by 96500 C electri 1. 45 g of silver is deposited by <u>96500</u>	c charge $\frac{OC \times 1.45 \text{ g}}{108 \text{ g}} = 1295.6 \text{ C}$	1
	Quantity of electricity passed = Curr $t = \frac{1295}{1.5}$ $Cu^{2+} + 2e \rightarrow Cu$ 2 x 96500 C deposits 63.5 g of Cu 1295.6 C deposits <u>63.5 g x 1295.6 C</u>	ent x t $\frac{66C}{100} = 863.7 \text{ s}$ anp of Cu	1
	$2 \ge 96500 \text{ C}$ = 0.426 g of Cu $Zn^{2+} + 2e^{-} \Rightarrow Zn$ 2 x 96500 C deposits 65.4 g of Zn 1295 6 C deposits 65.4 g of Zn	of 7n	1⁄2
	$\frac{1253.0 \text{ C deposits }}{2 \text{ x } 96500 \text{ C}}$ = 0.44 g of Zn		1⁄2
22	OR		
	$E_{cell}^{O} = E_{cat hode}^{O} - E_{anode}^{O}$		
	= 0.34 V - (-0.76) V = +1.10 V		1
	$\Delta G = - nFE^{O}_{cell}$		1⁄2
	=- 2 x 96500 C mol ⁻¹ x 1.10 = - 213.3 kJ mol ⁻¹) V	1/2 1

23	Li mited Spectrum Antibiotics: They are effective against a single organism or disease. ex. Penicillin G	$\frac{1}{2} + \frac{1}{2}$
	Antioxi dants: Che mi cal substances which prevent the oxidation in food stuff etc. are called antioxi dants. ex. BHA (or any other example)	1/2 + 1/2
	Tranquilizers: Drugs which act on central nervous system and thus help in reducing anxiety are called tranquilizers. ex. Equanil, Seconal, luminal etc (or any other example)	1/2 + 1/2
24	(a) The inpure N is heated with carbon monoxide(CO) to for m volatile compound N(CO) ₄ which on further heating decomposes at higher temperature gives pure N.	
	(b) Because of higher entropy in liquid state.	
	(c) Na CN is used for the leaching of silver ore in the presence of air to form a soluble complex.	1x3=3
25	(a) $\begin{array}{c}H \\ H \\ -C \\ -C \\ H \\ H\end{array} \xrightarrow{I} H \xrightarrow{I} O \\ -H \\ +H \\ H\end{array} \xrightarrow{Fast} H - \begin{array}{c}H \\ -C \\ -C \\ -C \\ -O \\ -H \\ H \\ H\end{array} \xrightarrow{I} H \xrightarrow{I} H$	1/2
	$\begin{array}{cccc} H & H & H \\ H - C - C & - O \\ H & H \end{array} \stackrel{H}{\longrightarrow} H \xrightarrow{\text{Slow}} H - C & - C^{+} \\ H & H & H \end{array} H \xrightarrow{\text{Slow}} H - H \xrightarrow{\text{Slow}} H \text{$	1⁄2
	$\begin{array}{cccc} H & H \\ H - \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \\ C \end{matrix} & \begin{matrix} I \end{matrix} & I \end{matrix} & \begin{matrix} I \end{matrix} & \begin{matrix} I \end{matrix} & I $	1
	(b)	
	b) OH Zn dust, CD CH3COCI COCH3 Combyed: Alcl3	1

26	(i) Ram Kind and helpful	1/2+1/2
	Police: Bound to their duty and helpful	
	-In the manufacture of fertilizers	½x4=2
	-In petrol eu mrefi ni ng	
	-In detergent industry	
27.	(b) Proteins which consist of linear thread like molecules which lie side by side.	1
	ex. Insuli n, al bu ni ns (any one)	1⁄2
	(c) Nucleic acids are polymers of nucleotides.	1
	Function: They are responsible for transfer of genetic information from one generation to the other (material synthesis (any one function)	1/2
28.	(a) $A=(CH_1 CO)_2 O$ C=CH_2 COOC ₂ H ₃ E=CH ₃ COCH ₃	1 1/2
	$B=CH_{COOH}$ $D=C_{2}H_{OH}$	1 1/2
		- /-
	(b)	
	(i) <u>Propanol and Propanone</u> : Propanone gives yellow ppt of Iodof or $n(CHI_3)$ on addition of NaOH/ I_2 whereas Propanol does not give this test. (or any other suitable test)	1
	(ii)	1
	Because carbon of carboxyl group is less electrophillic.	_
	OR	
•		
28	(a)	
	$(i) \qquad \qquad$	
	CH3 COCH3 LIAIHY CH3CH-CH3 CONCH2SOY CH3CH=CH2	1+1
	(or any other correct suitable method)	

	directly proportional to the pressure of the gas over the solution	1
	Applications	1
	(i) To increase the solubility of CQ in soft drinks and soda water, the bottle is sealed under high pressure	
	(ii) Scuba divers must cone with high concentrations of dissolved Ntrogen with	
	breathing air at high pressure under water. To avoid this air is diluted with He.	1/2
	(iii) At high altitudes the partial pressure of oxygen is less than that at the ground	$+\frac{1}{2}$
	level.	
	Low blood oxygen causes anoxia.	
	(any t wo)	
29	OR	
	1 1 1 man (m) - 22:4.9	
	no. of moles of benzene $(10) = \frac{234}{789} = 0.3$	
	no. of moles of toluene (n) = 64.4g = =0.7	
	92 gmo1-1	
	$x_{B} = \frac{m_{B}}{m_{B}} = \frac{0.3}{0.2407} = 0.3$	1⁄2
	$m_{\rm B} + m_{\rm T} = 0.3 + 0.7$	
		1⁄2
	$x_T = 0.7$	
	75mm × 0.3 = 22.5mm	
	$p_{B} = p_{B} \cdot x_{B} = f_{B} \cdot f_{B}$	1⁄2
	10 m - 22 mm × 0.7 = 15.4 mm	1/
	$P_{T} = P_{T}^{-1} + T^{-1}$	1/2
	Total V.P of solution = 22.51.51	
	= 37.9 mm	
	Mole fraction of Benzene in vapour phase	
	Partial V. Pot Benzene	
	= Table ViP of solution	
	Total vi ob	
	= 22.5 = 0.6	1
	37.9	

AN 3 2	2013
--------	------

	(b)	
	$\int \int $	1
30.	(a) Because of Lanthanoid contraction (b) Because of the presence of unpaired electrons there is strong metallic bonding and thus have high enthal py of atomization (c) Because Mh^{2+} is more stable due to half filled $3d^5$ whereas Gr^{3+} is stable due to half filled t_{2g}^3 orbital. (d) Because of the absence of unpaired electrons. (e) Because of half filled stable $3d^5$ configuration	1x5=5
30	(a) 4 Fe $\operatorname{Gr}_2 \mathbf{Q} + 8 \operatorname{Na}_2 \operatorname{CQ}_3 + 7\mathbf{Q} \rightarrow 8 \operatorname{Na}_2 \operatorname{Gr} \mathbf{Q}_1 + 2\operatorname{Fe}_2 \mathbf{Q}_2 + 8\operatorname{CQ}_2$ $2\operatorname{Na}_2 \operatorname{Gr} \mathbf{Q}_1 + 2\operatorname{H}^- \rightarrow \operatorname{Na}_2 \operatorname{Gr}_2 \mathbf{Q}_2 + 2\operatorname{Na}^+ + \operatorname{H}_2 \mathbf{O}$ No. $\operatorname{Gr} \mathbf{Q}_1 + 2 \operatorname{H}^- \rightarrow \operatorname{K}_2 \operatorname{Gr}_2 \mathbf{Q}_2 + 2\operatorname{Na}^+ + \operatorname{H}_2 \mathbf{O}_2$	1 1/2
	$\operatorname{Na}_2 \operatorname{Gr} \mathcal{G} + 2 \operatorname{Ku} \rightarrow \operatorname{R}_2 \operatorname{G}_2 \mathcal{G} + 2 \operatorname{Na} \operatorname{U}_2$	1/2
	Di chromate ion changes to chromate ion on increase in pH	1
	(b) The steady decrease in atomic radii with increase in atomic number is called lant hanoid contraction.	

Т

Exp) Because of the presence of unpaired electrons. Sh. S.K.Munjal Dr (Mrs.) Sangeeta Bhatia Prof. R.D.Shukla Mr. K.M. Abdul Raheem Dr. K.N.Uppadhya Mr. D. A Mishra Mr. Rakesh Dhawan Ms. Neeru Sofat Mr. Virendra Singh	5d series elements have nearly same atomic radii as that of 4d series elements.	
Sh. S.K.Munjal Dr (Mrs.) Sangeeta Bhatia Prof. R.D.Shukla Mr. K.M. Abdul Raheem Dr. K.N.Uppadhya Mr.D. A Mishra Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	c) Because of the presence of unpaired electrons	
Sh. S.K.Munjal Dr (Mrs.) Sangeeta Bhatia Prof. R.D.Shukla Mr. K.M. Abdul Raheem Dr. K.N.Uppadhya Mr.D. A Mishra Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh		
Dr (Mrs.) Sangeeta Bhatia Prof. R.D.Shukla Mr. K.M. Abdul Raheem Dr. K.N.Uppadhya Mr.D. A Mishra Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	Sh. S.K.Munjal	
Prof. R.D.Shukla Mr. K.M. Abdul Raheem Dr. K.N.Uppadhya Mr.D. A Mishra Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	Dr (Mrs.) Sangeeta Bhatia	
Raheem Dr. K.N.Uppadhya Mr. Rakesh Dhawan Ms. Neeru Sofat Mr. Virendra Singh	Prof. R.D.Shukla	Mr. K.M. Abdul
Dr. K.N.Uppadhya Mr.D. A Mishra Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	Raheem	
Mr. Rakesh Dhawan Mr.Deshbir Singh Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	Dr. K.N.Uppadhya	Mr.D. A Mishra
Ms. Neeru Sofat Mr. Akhileshwar Mishra Mr. Virendra Singh	Mr. Rakesh Dhawan	Mr.Deshbir Singh
Mr. Virendra Singh	Ms. Neeru Sofat	Mr. Akhileshwar Mishra
	Mr. Virendra Singh	