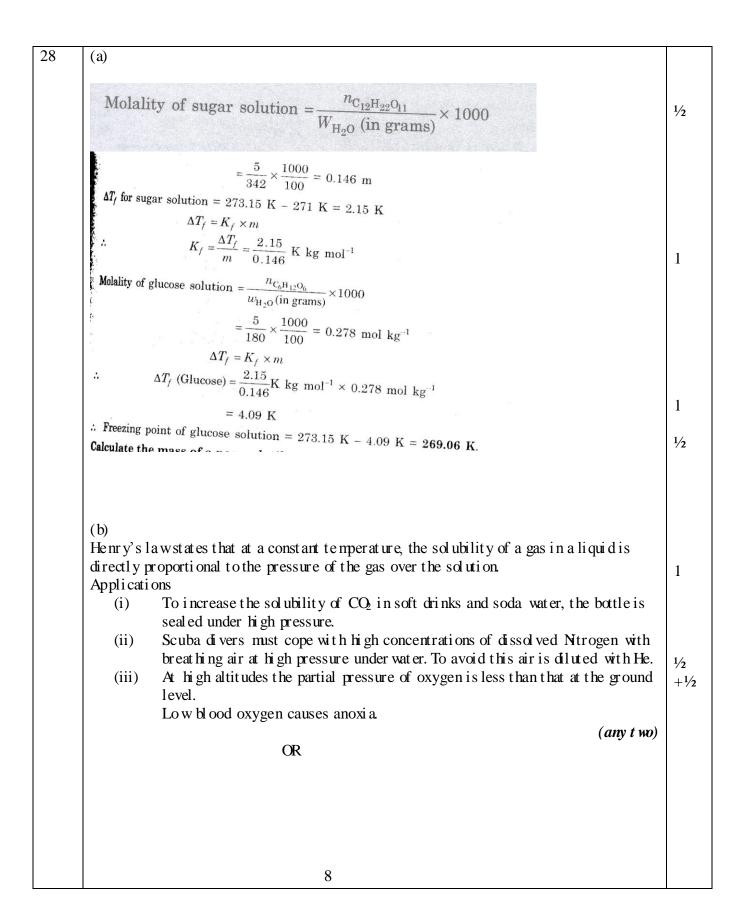
<u>CHEM STRY MARKING SCHEME</u> <u>AN - 2013</u> <u>SET - 56/1(AN)</u>

Q no.	Answers	Marks
1	When concentration of each reactant is taken as unity.	1
2	$Na_3 PQ_4 > K_2 SQ_4 > Na Q$	1
3	C F	1
4	$4 H_{s} PO_{s}$ heat $3 H_{s} PO_{t} + PH_{s}$	1
5	K_4 [Fe(CN) ₆]	1
6	Add Lucas reagent (conc. HQ + Anhyd. ZnQ_2) to both the alcohols separately. Turbidity will be produced infine diately in case of 2-methyl propan-2-ol	1
7	2- met hyl cycl opent-3-ene carboxylic acid/ for any other attempt give full marks.	1
8	G ycogen	1
9	Vol u me of unit cell = $a^3 = (288 \times 10^{10} \text{ cm})^3$ = 2.39 x 10 ²³ cm ³	
	Volume of 208 g of the element $= \frac{mass}{density} = \frac{208g}{7.2 \text{ g cm}^{-3}} = 28.88 \text{ cm}^{3}$ Number of unit cells in this volume $= \frac{28.88 \text{ cm}^{3}}{2.39 \times 10^{-23} \text{ cm}^{3} / \text{ unit cell}} = 12.08 \times 10^{23} \text{ unit cells}$ Since each <i>bcc</i> cubic unit cell contains 2 atoms, therefore, the total number of atoms in 208 g = 2 (atoms/unit cell) × 12.08 × 10^{23} unit cells $= 24.16 \times 10^{23} \text{ atoms}$	1
	(or any other correct method may be used)	
10	 Di ode is a combination of n-type and p-type semi conductors and is used as rectifier. npn and pnp type of transistors are used to detect or a mplify radio or audio signals. 	
	3. The solar cell is an efficient photo diode used for conversion of light energy to electrical energy. (any two)	1+1

11	 (i) Because the ions present in saline water enhance the electroche mical process of rusting. (ii) Because the number of ions per unit volume decreases with dilution. 	
12	The activated complex has a transient existence and breaks up at a definite rate to for mthe	1+1
	product. The energy required to for mactivated complex is called activation energy.	1+1
10	OR The acts of reaction is defined as the abayes in concentration of reactories on mediate are	1
12	The rate of reaction is defined as the change in concentration of reactants or products per unit time. or mathematical expression If the rate is measured in larger time interval (Δt) then it is called average rate whereas if the	1
	rate is measured in very small time interval ($\Delta t - \Theta$) then it is called instantaneous rate.	1/2+1/2
13		
	$\log \frac{[R]_1}{[R]_2} = \frac{k(t_2 - t_1)}{2.303}$	
	$k = \frac{2.303}{(t_2 - t_1)} \log \frac{[R]_1}{[R]_2}$	1/2
	$= \frac{2.303}{(60 \text{ min} - 0 \text{ min})} \log \frac{1.24 \times 10^{-2} \text{ mol } \text{L}^{-1}}{0.20 \times 10^{-2} \text{ mol } \text{L}^{-1}}$ 2.303	1
	$= \frac{2.303}{60} \log 6.2 \min^{-1}$ k = 0.0304 min ⁻¹	1⁄2
14	(a) \uparrow^+ \uparrow^+	
	en Co en Co cis Torms	1/2 + 1/2
	(b) sp^3d^2 , oct a hedral / It is an outer orbital oct a hedral complex with sp^3d^2 hybridisation.	$\frac{1}{2} + \frac{1}{2}$

15	(a) Add aq KOH followed by 2, 4- DNP to both the compounds. 1, 1-dichloroethane gives yellow ppt.	1
	(or any other correct test)	
	(b) CH ₃ Br KCN CH ₆ CN CH ₃ Mg Br/ H_3O^+ CH ₃ COCH ₆	1
	(or by any other suitable method)	
16	(i)	
	+ - ·	
	$ \underbrace{ \bigvee^{N_2 X} \xrightarrow{Cu_2 X}} \underbrace{ \bigvee^{X}}_{X} + N_2 $	
	Aryl halide	
	X = Cl, Br	
	(ii)	
	X 2No + PX Ether +2NaX	
	$+2Na + RX \xrightarrow{Ether} +2NaX$	1+1
17	(a) Because of resonance in CH ₃ CONH ₂ , Nacquires +ve charge whereas due to +I effect electron density on Nincreases in CH ₃ CH ₂ NH ₂	
	(b) Because of strong activation effect or +R effect of NH ₂ group in aromatic a mines.	1+1
18	(or can be explained by diagrammatic representation) (i) CH ₃ - CH ₂ - CH ₂ NH ₂	
10		
	NH	
	(ii) CH ₃ - CH CH ₃	
	(iii) CH ₂ - CH ₂ - NH CH ₃	

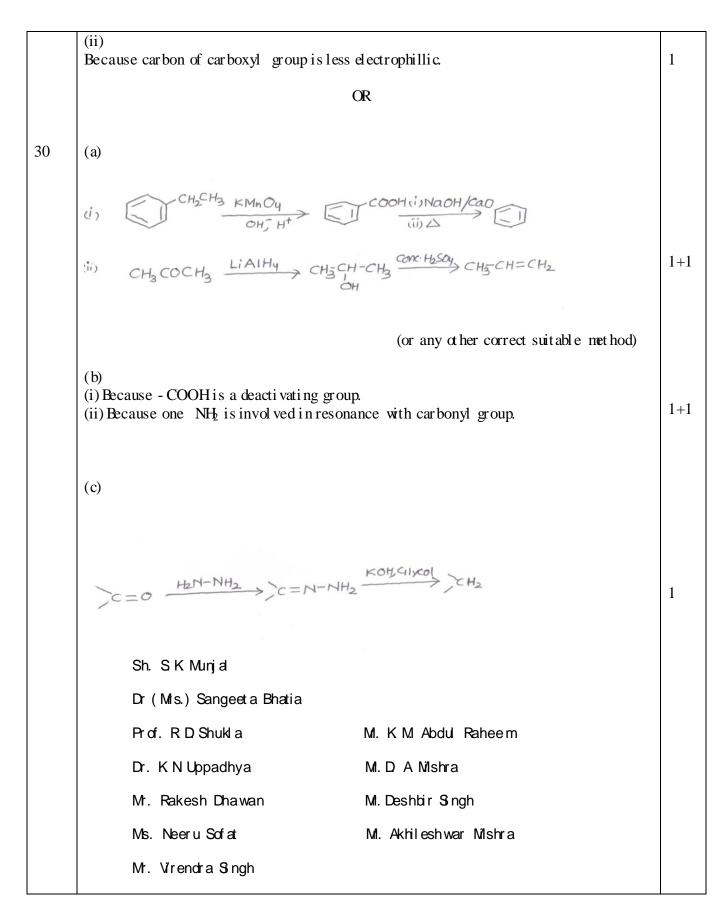

	CH3	
	(iv) CH3- N CH3	$\frac{1}{2x}3 = 1 \frac{1}{2}$
	(At least 3 correct structures should be written)	
	Propana mi ne and 2-a mi nopropane	1⁄2
19	Ag ⁺ + e ⁻ → Ag 108 g is deposited by 96500C electric charge 1. 45 g of silver is deposited by $96500C \times 1.45 \text{ g} = 1295.6 \text{ C}$ 108 g	1
	Quantity of electricity passed = Current x t $t = \frac{1295.6C}{1.5 \text{ a np}} = 863.7 \text{ s}$ $Cu^{2+} + 2e \rightarrow Cu$ 2 x 96500 C deposits 63.5 g of Cu 1295.6 C deposits <u>63.5 g x 1295.6 C</u> of Cu	1
	$2 \times 96500 \text{ C}$ $= 0.426 \text{ g of } \text{Cu}$ $\text{Zn}^{2+} + 2e^{-} \rightarrow \text{Zn}$	1/2
	2 x 96500 C deposits 65.4 g of Zn 1295. 6 C deposits <u>65.4g x 1295. 6 C</u> of Zn 2 x 96500 C	1⁄2
	= 0.44 g of Zn	
19	OR $E_{cell}^{O} = E_{cat hode}^{O} - E_{anode}^{O}$	
	= 0.34 V - (-0.76) V = +1.10 V	1
	$\Delta G = - nFE^{O}_{cell}$	1⁄2
	$= -2 \times 96500 \text{ C mol}^{-1} \times 1.10 \text{ V}$ = -213.3 kJ mol^{-1}	¹ / ₂ 1

20	 (i) Shape selective Cat al ysis: The reaction in which a cat al yst action depends upon its pore structure and molecular sizes of the reactants as well as products is called shape selective cat al ysis. (ii) M celles: They are associated colloid which behave as electrolytes at low concentration but behave as colloid at higher concentration. (iii) Lyophobic sols: The sols which are solvent repelling in nature. 	1x3=3
21	 (a) The i mpure N is heated with carbon monoxide(CO) to for m volatile compound N(CO)₄ which on further heating decomposes at higher temperature gives pure N. (b) Because of higher entropy in liquid state. (c) Na CN is used for the leaching of silver ore in the presence of air to form a soluble complex. 	1x3=3
22	 (i) Ram Kind and helpful Police: Bound to their duty and helpful (ii) In the manufacture of fertilizers In petrol eu mrefining In det er gent industry In storage batteri es 	$\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2}\times4=2$
23	(a) $PbS + 4Q$ \longrightarrow $PbSQ_{4} + 4Q$ (or any other correct reaction) (b) $6XeF_{4} + 12H_{2}O \longrightarrow 2XeQ_{3} + 4Xe + 24HF + 3Q_{2}$ (c) Because H is more stable in +3 oxi dation state.	1x3=3

AN 1 2013

24	(a)	
	$\begin{array}{c} H & H \\ H & H \\ H & -C & -C \\ H & H \end{array} \xrightarrow{V} H + H^{+} \xrightarrow{Fast} H - C - C - O^{+}_{O} H \\ H & H \end{array}$	1⁄2
	$\begin{array}{cccc} H & H & H & H & H & H & H & H & H & H $	1/2
	$\begin{array}{cccc} H & H \\ H - C & I \\ I & I \\ H & H \end{array} \xrightarrow{H} C = C \\ H & H \\ Ethene \end{array} + H^{+}$	1
	(b)	
	CH3COCI COCH3 CH3COCI COCH3 COCH3	1
25	(b) Proteins which consist of linear thread like molecules which lie side by side. ex. Insulin, al bumins (any one)	1 1⁄2
	(c) Nucleic acids are polymers of nucleotides.Function: They are responsible for transfer of genetic information from one generation to the other./ protein synthesis (any one function)	1 1⁄2
26	(a) <u>Chain Growth Polymerisation</u> <u>Step Growth Polymerisation</u>	
	They are used when molecules of the same monomer or different monomers add together on a large scale.They are for med by the condensation of bifunctional monomers.	1
J		•

	There is no loss of simple molecules.	They result in the loss of some simple molecule.	1
	(b) Sul phur for ms cross links during vul canization	on and makes the rubber hard.	1
27.	Li nited Spectrum Antibiotics: They are effected ex. Penicillin G	cti ve agai nst a si ngl e organi s m or di sease.	$\frac{1}{2} + \frac{1}{2}$
	Anti oxi dants: Che mi cal substances which pre anti oxi dants. ex. BHA (or any other exa mple)	event the oxidation in food stuff etc. are called	¹ / ₂ + ¹ / ₂
	Tranquilizers: Drugs which act on central ner are called tranquilizers. ex. Equanil, Seconal, luminal etc (or any othe	r vous system and thus help in reducing anxiety er example)	1/2 + 1/2



28(a) no. of moles of benzene $(m_B) = \frac{23.4.3}{78gmol} = 0.3$ no. of moles of toluene $(n_T) = \frac{64.4g}{92gmol^{-1}}$ $\therefore x_{B} = \frac{m_{B}}{m_{B} + m_{T}} = \frac{0.3}{0.3 + 0.7} = 0.3$ 1/2 1/2 $x_{T} = 0.7$ $p_{B} = p_{0}^{\circ} \cdot x_{B} = 75 \text{ mm} \times 0.3 = 22.5 \text{ mm}$ 1/2 $p_T = p_T^{o, x_T} = 22 \text{ mm} \times 0.7 = 15.4 \text{ mm}$ 1/2 Total V.P of solution = 22.5+15.4 = 37.9 mm Mole fraction of Benzene in vapour phase = Partial V. P of Benzene Total V.P of solution = 22.5 = 0.6 1 (b) liquid solven 1 Vapour pressure → $\Delta T_{\rm f}$ Temperature/K -1 On adding non volatile solute vapour pressure of solution decreases. Therefore to freeze the solution temperature has to be lowered down causing depression of freezing point.

AN-1 2013

h
nd
nal f
1x5=
5
1 1/2
1/2
1
1
1
1
1 1/2
1 72
1 1/2
1 / 2
1

AN-1 2013

