
Paper Biotechnology 99/0

Marking Scheme

	1. Grow in solution, no adherence to vessel; e.g. blood cells.	^{1/2} + ^{1/2}		
	2. <i>Taxus</i> species; anti carcinogenic.	^{1/2} + ^{1/2}		
	3. Used as antifoaming agent to prevent denaturation	^{1/2} + ^{1/2}		
	4. A stationary phase culture has stopped growing.	1		
	5. $T_d = 0.693/\mu$	1		
	6. Matrix assisted laser desorption and Ionisation. Proteins are	e volatalised		
	and ionised for analysis of their molecular masses (m/z ratio	o). $1/2 + 1^{1/2}$		
	7. Algorithm based on known training sets, inaccurate. Reason: overlapping			
	genes/splice variants. Pg 61	2		
	8. Any one from book (Pg 122-130)			
	Bt Cotton- pest resistance/ canola, soyabean, corn, cotton- herbicide			
	tolerant/ papaya etc virus resistant.	2		
	9. cDNA for expressed genes; gDNA for all genome sequences	. 1+1		
	10. To store novel strains/species for repository.	1		
	MTCC Chandigarh, NBAIM (Mau, UP)	1		
	11. Any two components from pg 110 such as -			
	Sucrose as Carbon source, ammonium salts as nitrogen sou	rce, vitamins,		
	hormones as growth regulators etc.	2		
	12. Mortality of finite cultures; lack of adherence of continuous cultures etc.			
	pg 137-138 (any two).	2		
	13. Protein engineering/ site directed mutagenesis.	1		
	Application: subtilisin/ epitope micromanipulation (page 53	3) 1		
14. Vector selection is based on size of fragments, a 22 kb fragment can be				
	suitably cloned in phage based vector	1		
	Host: Bacterium	1		
	15. Generation of various parts of plants: roots, shoots.	2		
16. Any 3:				
High production capacity/ ease of source material collection/ low				
	operational cost/ ease of production.	3		
	17. To solve medico-legal cases.	1		

Principle: DNA from subject is isolated and restricted, followed by	
comparison of RFLPs to assess variations. Pg 7 + 8	2
18. Pg 91 for graph (fig. 6) and other details	3
19. pH- stability of protein	1
less time- to prevent denaturation	1
agitation- causes instability in protein	1

20. Vector in which foreign DNA is inserted has genes A & B for different antibiotic resistance. Cloning into A causes insertional inactivation and hence, causes sensitivity to antibiotic A. Since gene B is functionally active hence resistance to B results.

Principle based on insertional inactivation of lac Z gene on the vector (PUC 19) used.

No insertional inactivation, ß- galactosidase expressed.

---- X-gal converted to blue product- therefore, blue colonies

Insertional inactivation, ß- galactosidase not expressed ----- white colony.

21.	100mg/ 500ml; therefore 500X1000mg in 25X10 ⁵ ml or 2500L.	1 ^{1/2}
	For 50LX2 fermentors/week= 2500/ 100X4 = 6 months/25 wks.	$1^{1/2}$

3

22. Fusion of protoplasts results in intergenetic somatic hybrids.	
Benefits: to obtain hybrids with useful agronomic traits not normally	
found through sexual fertilisation. e.g. pomatoes, topatoes.	3
22 Animal calls require Q for energy (ATD production)	1 1/2

23. Animal cells require O_2 for energy (ATP production).	1 ^{1/2}
Addition of microcarrier beads/ roller culture bottles.	1 ^{1/2}

- 24. For better compression of data. B, H1 + 225. Antigen epitope specific; e.g. OKT 3/ Herceptin etc1 + 2
- 26. pg 45 for MS
 - OR

pg 36-38 for protein finger printing

interpretation of results with respect to Sickle cell anaemia 4 +1

27. Pg 67-69
Principle
Diagram
Interpretation
28. Sanger's dideoxy method pg 23-25 (fig 15)
3 +2
OR

Description of Southern Hybridization; (Fig 10), Page 20

OR