MATHEMATICS SAMPLE QUESTION PAPER CLASS IX

(SUMMATIVE ASSESSMENT - II)

TIME: 3 hours - 3½ hours

Maximum Marks: 80

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into 4 sections, section A, B, C, and D.
- 3. Section A contains 12 multiple choice type questions, first 8 of which carry 1 mark each and the next 4 carry two marks each. Section B contains 7 questions of 2 marks each, section C contains 10 questions of 3 marks each and section D contains 5 questions of 4 marks each.
- 4. Use of calculators is not permitted.

SECTION-A

Question numbers 1 to 8 are of 1 marks each and from 9 to 12 are of 2 marks each. Each question is provided with 4 choices out of which only one is correct. Choose the correct one.

- Q 1. Between two rational numbers, there is / are
 - infinite number of rational numbers (A)
 - **(B)** one and only one rational number
 - no rational number (C)
 - no irrational number (D)
- Which of the following is a polynomial in one variable? Q2.
 - (A)
- $\sqrt{2} x^2 + 3x$ (B) $\sqrt{2x} + 9$
 - x^2+x^{-2} (C)
- (D) $x^5 + y^8 + 9$
- In Fig. 1, the value of x is Q3.
 - 80° (A)

 $(B) 20^{\circ}$

40° (C)

(D) 60°

- In Fig. 2, the congruence rule used in proving $\triangle ACB \cong \triangle ADB$ is Q4.
 - ASA (A)
- (B) SAS

(C) SSS

- (D) RHS
- The sides of a quadrilateral are extended in order to form Q5. exterior angles. The sum of these exterior angles is
 - 180° (A)
- (B) 270°

90° (C)

(D) 360°

- ABCD is a rhombus with $\angle ABC=40^{\circ}$. The measure of $\angle ACD$ is Q6.
 - 90° (A)

 $(B) 20^{\circ}$

40° (C)

- (D) 70°
- The distance of a chord of length 16cm from the centre of the circle of radius 10cm is Q7.
 - (A) 6cm
- (B) 8cm
- (C) 10cm
- (D) 12cm
- If the diameter of base of a cone is 8cm and its height is 3cm, the slant height of cone is Q8.
 - (A) 5 cm
- (B) 6 cm
- (C) 7.5 cm
- (D) 6.25 cm
- Q9. $\frac{1}{\sqrt{18} \sqrt{32}}$ is equal to
 - (A) $\sqrt{2}$
- (B) $-\sqrt{2}$
- (C) $\frac{1}{\sqrt{2}}$
- (D) $\frac{-1}{\sqrt{2}}$
- Q10. The value of $p\left(\frac{1}{2}\right)$ for $p(z) = z^4 z^2 + z$ is
 - (A) $\frac{7}{16}$ (B) $\frac{5}{16}$

(C) $\frac{3}{16}$

- Q11. In Fig. 3, if ABIICF, CDIIFE, then the value of x is
 - 40° (A)
 - **(B)** 65°
 - 75° (C)
 - (D) 105°

Q12. In Fig. 4, BCPQ and BCDA are two parallelograms on the same base BC.

The value of (x+y) is

- (A) 130°
- (B) 140°
- (C) 115°
- (D) 120°

SECTION-B

Question numbers 13 to 19 carry 2 marks each.

- Q13. Without actually calculating the cubes, find the value of 55³-25³-30³
- Q.14. In Fig. 5, OA \perp OD, OC \perp OB, OD=OA and OC=OB

 Prove that AB=CD

- Q15. In Fig. 6, ABCD is a parallelogram in which X and Y are the mid-points of the sides DC and AB respectively.

 Prove that AXCY is a parallelogram.
- Q16. In Fig.7, RS is a diameter of the circle with centre O.

 NM is parallel to RS and

 ∠MRS=29°. Find ∠RNM.

- Q17. The total surface area of a cube is 486cm². Find its volume.
- Q18. The mean of 100 observations is 50. If the observation 50 is replaced by 150, what will be the resulting mean?
- Q.19. The median of the following observations arranged in ascending order is 24. Find the value of x. 11, 12, 14, 18, x+2, x+4, 30, 32, 35, 41

SECTION C

Question numbers 20 to 29 carry 3 marks each.

- Q20. If $a=1-\sqrt{2}$, find the value of $\left(a-\frac{1}{2}\right)^3$
- Q21. Factorise 3-12(a-b)²
- Q22. In Fig.8, AB||CD. Find x.

- E X 125° C Fig. 8 D
- Q23. In Fig.9, ABCD is a square. M is the mid-point of AB and $PQ \perp CM$ meets AD at P and CB produced at Q. Prove that
 - (i) $\Delta PAM \cong \Delta QBM$
 - (ii) CP=CQ
- Q24. In Fig.10, ABCD is a parallelogram in which
 E is the mid-point of AD. DF||EB, meeting
 AB produced in F and BC at L. Prove that DF=2DL

Q25. In Fig. 11, there are two concentric circles with centre O.

AD is a chord of larger cricle intersecting the smaller circle at B and C. Prove that AB=CD.

Q26. In Fig. 12, C and D are two points on the semicircle described on AB as diameter.If ∠BAD=70° and ∠DBC=30°, find ∠BCD and ∠BDC.

- Q27. The difference between the outside and inside surfaces of a cylindrical pipe 14cm in length is 44cm². Find the thickness of the pipe.
- Q28. A sphere, a cylinder and a cone have the same radii. The height of the cylinder and the cone is equal to the diameter of the sphere. Find ratio of their respective volumes.
- Q29. The distribution of expenditure of a family on food items is given in the following bar chart. Read the bar chart and answer the following questions:
 - Q1. What is the percentage of excess expenditure on wheat than that on pulses?
 - Q2. What is the total percentage expenditure on pulses and ghee?

Section D

Question numbers 30 to 34 carry 4 marks each.

30. Prove that a diagonal of a parallelogram divides it into two congruent triangles.

31. Following table gives the distribution of the marks obtained by the students of a class.

-						
Marks	0-15	15-30	30-45	45-60	60-75	75-90
Number of						
students	5	12	28	30	35	13

Represent the data by a frequency polygon.

- 32. Factorise $(a^2-2a)^2 23(a^2-2a) + 120$
- 33. In Fig 14, two circles with centres at A and B intersect each other at points P and Q. Prove that the line joining the centres (AB) bisects the common chord (PQ) at right angles.

134. The radius and height of a cylinder are in the ration 2:3. If the volume of the cylinder is 1617 cm³, find the radius of base of the cylinder.

MATHEMATICS

MARKING SCHEME

CLASS IX

No.				Answers				Marks
				SECTION-A				
1.	(A)	2.	(A)	3.	(B)	4.	(B)	
5.	(D)	6.	(D)	7.	(A)	8.	(A)	
9.	(D)	10.	(B)	11.	(D)	12.	(D)	
			;	SECTION-B				
13.	a = 55,	b = -25,	c = -30					1/2
	∴ a+b+c=0							
	If $a+b+c=0$,	then $a^3 + b^3 + c^3 = 3$	3abc					1/2
	∴ 55³-25³-30	$0^3 = 3(55)(-25)$	(-30)					1/2
		= 123750						1/2
14.	In the given f	igure						
	∠DOA+∠0	COA = ∠BOC+	-∠COA					
	∠DOC = ∠	(AOB						1/2
	In ΔCOD aı	nd ΔBOA						
	CO = BO	(given)						
	OD = OA	(given)						1/2
	∠DOC = ∠	AOB (proved a	above)					
	∴ ∆COD≅	ΔBOA (S.A.S.	axiom)					1/2
	∴ CD = AE	3 (c.p.c.t.)						1/2
15.	In the given f	figure						
	ΔBCD is a	parallelogram						
	: ABIICD	and AB = CD			,			1/2

No.	Answers	Marks
	$\Rightarrow \frac{1}{2}AB \frac{1}{2}CD \text{ and } \frac{1}{2}AB = \frac{1}{2}CD$	1/2
		/2
1	⇒ XCI AY and XC=AY (∵ X and Y are mid point of DC and AB respectively)	1/2
	\Rightarrow AXCY is a parallelogram.	1/2
16.	In the given figure	
	∠RMS = 90° (angle in a semicircle as RS is diameter)	1/2
	∴ \angle RSM = 180° - (29°+90°) (angle sum property of triangle)	
	= 180° - 119°	
	= 61°	1
	\angle RNM = 180° - 61° (opposite angles of a cyclic quadrilateral are supplementary)	
	= 119°	1/2
17.	Let each side of cube be a cm.	<u>.</u>
	It is given that $6a^2 = 486$	1/2
	$\therefore a^2 = 81$	
	a = 9 cm	1/2
	$\therefore \text{ volume of cube} = a^3$	1/2
	= 9 ³	
	$= 729 \text{ cm}^3$	1/2
	Sum of 100 observations	
18.	Mean = 5000000000000000000000000000000000000	1/2
	Sum of 100 observations = $50x100$	
	= 5000	1/2
	New sum = $5000-50+150$	1/2
	= 5100	
	:. New mean = $\frac{5100}{100} = 51$	1/2

No.	Answers	Marks
19.	Total observations $n = 10$ (even)	
	\therefore median = mean of $\left(\frac{n}{2}\right)^{th}$ and $\left(\frac{n}{2}+1\right)^{th}$ observations	1/2
	median = mean of 5th & 6th observations	1/2
	$24 = \frac{(x+2) + (x+4)}{2}$	
	$=\frac{2x+6}{2}=x+3$	1/2
	$\therefore x = 21$	1/2
	SECTION-C	
20.	$a = 1 - \sqrt{2}$	
	$a = 1 - \sqrt{2}$ $\frac{1}{a} = \frac{1}{1 - \sqrt{2}}$	
	$= \frac{1}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}$	1/2
:	$= \frac{1+\sqrt{2}}{1-2}$	1/2
	$= -\left(1+\sqrt{2}\right)$	1/2
	$ = -(1+\sqrt{2}) $ $ a - \frac{1}{a} = (1-\sqrt{2}) - \{-(1+\sqrt{2})\} $	1/2
	$=1-\sqrt{2}+1+\sqrt{2}$ $=2$	1/2
	$\therefore \left(a - \frac{1}{a}\right)^3 = 2^3$	
	= 8	1/2
:		

No.	Answers	Marks
21.	$3-12(a-b)^2$	
	$= 3\{1-4(a-b)^2\}$	1/2
	$= 3 \left[(1)^2 - \left\{ 2(a-b) \right\}^2 \right]$	1
	$= 3 \left[\left\{ 1 + 2(a-b) \right\} \left\{ 1 - 2(a-b) \right\} \right]$	1
	$= 3 \left[(1+2a-2b)(1-2a+2b) \right]$ A B 140°	1/2
22.	Draw EXI CD EX CD $\therefore \angle XEC + \angle ECD = 180^{\circ} \text{ (interior angles on same side of transversal)}$	1/2
	$\therefore \angle XEC = 180^{\circ}-125^{\circ}$ $= 55^{\circ}$	1
	EXIIAB (: ABIICD)	
	$\therefore \angle XEA + \angle EAB = 180^{\circ} \text{ (same reason)}$	
	$\therefore \angle XEA = 180^{\circ} - 140^{\circ}$ $= 40^{\circ}$	1
	$x = \angle XEC + \angle XEA$	
	= 55° + 40° = 95°	1/2
23.	In ΔPAM and ΔQBM	
,	$\angle PAM = \angle QBM = 90^{\circ}$ each	·
	AM = BM (M is the mid-point of AB)	
	$\angle AMP = \angle BMQ$ (vertically opposite angles)	
	$\therefore \Delta PAM \cong \Delta QBM (A.S.A.)$	1
	$\therefore PM = MQ (c.p.c.t.)$	1/2
	In ΔCPM and ΔCQM	;
		<u> </u>

No.	Answers	Marks
	PM = MQ (proved above)	
	$\angle PMC = \angle QMC = 90^{\circ}$ each	
	CM = CM (common)	
	$\therefore \Delta CPM \cong \Delta CQM (S.A.S. axiom)$	1
	$\therefore CP = CQ (c.p.c.t.)$	1/2
24.	In $\triangle ADF$	
	E is the mid-point of AD (given)	
	BEIIDF (given)	
	By converse of mid-point therem B is the mid-point of AF	1
	$\therefore AB = BF \qquad (i)$	
	ABCD is a parallelogram	
	$\therefore AB = CD \qquad (ii)$	
	from (i) and (ii)	
	CD = BF	1/2
	Consider ΔDLC and ΔFLB	
	DC = FB (proved above)	
·	$\angle DCL = \angle FBL$ (alternate angles)	
	$\angle DLC = \angle FLB$ (vertically opposite angles)	
	$\therefore \Delta DLC \cong \Delta FLB (A.A.S.)$	1
	$\therefore DL = LF$	
	$\therefore DF = 2DL$	1/2
25.	Draw OM ⊥ AB	
	Perpendicular drawn from centre to a chord bisects the chord	1/2
	$\therefore AM = MD \qquad (i)$	1/2
	$OM \perp BC, BM = MC \qquad (ii) \qquad \qquad \left(\begin{array}{c} O \\ \end{array} \right)$	1/2
	$(i) - (ii) \Rightarrow AM-BM = MD-MC$	1/2
	\Rightarrow AB = CD	1/2

No.	Answers	Marks
26.	AB is diameter	
	∴ ∠BDA = 90° (angle in a semicircle)	
	In ΔBDA	
	$\angle ABD = 180^{\circ} - (90^{\circ} + 70^{\circ})$ (angle sum property of triangle)	
	$= 180^{\circ} - 160^{\circ}$	
	= 20°	1
	$\angle CBA + \angle ADC = 180^{\circ}$ (ABCD is a cyclic quadrilateral)	
	$\therefore (30^{\circ}+20^{\circ}) + 90^{\circ} + \angle BDC = 180^{\circ}$	
1	$\therefore \angle BDC = 180^{\circ} - 140^{\circ}$	
	= 40°	1
	In ΔBCD	
	$\angle BCD = 180^{\circ} - (30^{\circ} + 40^{\circ})$ (angle sum property of triangle)	
	$= 180^{\circ} - 70^{\circ}$	
	= 110°	1
27.	$2\pi h\left(r_1-r_2\right)=44$	1
	$2 \times \frac{22}{7} \times 14 (r_1 - r_2) = 44$	1
	$\mathbf{r}_1 - \mathbf{r}_2 = \frac{1}{2}$	1
	\therefore Thickness of the pipe is $\frac{1}{2}$ cm	
28.	Let radius of sphere = radius of cylinder = radius of cone = r (say)	1/2
	Height of cylinder = height of cone = 2r	1/2
	:. Vol. of sphere: Vol. of cylinder: Vol of cone	
	$= \frac{4}{3}\pi r^3 : \pi r^2(2r) : \frac{1}{3}\pi(r^2)(2r)$	1
	$=\frac{4}{3}:2:\frac{2}{3}$	
	= 2:3:1	1

No.			Answers	Mari
29.	(i)	Percentage of excess expend	liture on wheat than that on pulses = $(35-20)$ 9	% 1
			= 15%	1/2
	(ii)	Total percentage expenditure	e on pulses and Ghee = (20+15)%	1
	÷		= 35%	1/2
			SECTION-D	
30.	Given,	To prove, Figure, construction	n (if any).	2 2
31.	Classes	Class - marks	Frequency	
	0-15	7.5	5	
	15-30	22.5	12	
	30-45	37.5	28	
	45-60	52.5	30	
	60-75	67.5	35	
	75-90	82.5	13	2
		y 35 30 25 30 25 30 15 10		
		7.5 22.5	37.5 52.5 67.5 82.5 x Class marks	2

Answers	Marks
$(a^2-2a)^2 - 23(a^2-2a) + 120$, Let $a^2-2a = x$	1/2
$= x^2 - 23x + 120$	1/2
$= x^2-8x-15x+120$	1/2
=(x-8)(x-15)	1/2
$= (a^2-2a-8)(a^2-2a-15)$	
= (a-4)(a+2) (a-5)(a+3)	2
In $\triangle APB$ and $\triangle AQB$	
AP = AQ (radii of circle)	
PB = QB (radii of circle)	
AB = AB (common)	
$\therefore \Delta APB \cong \Delta AQB (S.S.S.)$	1
$\therefore \angle BAP = \angle BAQ (c.p.c.t.)$	1/2
Consider ΔPMA and ΔQMA	
$\angle PAM = \angle QAM$	
AM=AM (common)	
AP=AQ (radii of circle)	
$\therefore \Delta PMA \cong \Delta QMA (S.A.S. axiom)$	1
$\therefore PM = MQ$	
$\angle PMA = \angle QMA$ (c.p.c.t.)	1/2
Now $\angle PMA + \angle QMA = 180^{\circ}$ (Linear Pair)	1/2
$\therefore 2\angle PMA = 180^{\circ}$	
$\angle PMA = 90^{\circ}$	
$\therefore PQ \perp AB$	1/2
h = 2 2	1/2
	1/2
$1617 = \frac{22}{7}(2x)^2 (3x)$	1/2
	(a²-2a)² - 23(a²-2a) + 120, Let a²-2a = x = x²-23x+120 = x²-8x-15x+120 = (x-8)(x-15) = (a²-2a-8)(a²-2a-15) = (a-4)(a+2) (a-5)(a+3) In ΔΑΡΒ and ΔΑQΒ AP = AQ (radii of circle) PB = QB (radii of circle) AB = AB (common) ∴ ΔΑΡΒ ≅ ΔΑQΒ (S.S.S.) ∴ ∠ΒΑΡ = ∠ΒΑQ (c.p.c.t.) Consider ΔΡΜΑ and ΔQΜΑ ∠ΡΑΜ = ∠QΑΜ AM = AM (common) AP = AQ (radii of circle) ∴ ΔΡΜΑ ≅ ΔQΜΑ (S.A.S. axiom) ∴ PM = MQ ∠PMA = ∠QMA (c.p.c.t.) Now ∠PMA + ∠QMA = 180° (Linear Pair) ∴ 2∠PMA = 180° ∠PMA = 90° ∴ PQ ⊥ AB r: h = 2x: 3x volume of cylinder = πτ²h

No.	Answers	Marks
	$1617 = \frac{22}{7} \times 12x^3$	
	$\Rightarrow x^3 = \frac{539 \times 7}{22 \times 4}$	1/2
	$= \frac{49 \times 7}{2 \times 4} = \frac{7 \times 7 \times 7}{2 \times 2 \times 2}$	1
	$x = \frac{7}{2}$	1/2
	∴ radius of base of the cylinder = 7cm	1/2
		•